python写KPCA高斯核参数gamma寻优算法
时间: 2024-01-27 15:03:44 浏览: 145
KPCA高斯核参数gamma的寻优算法通常使用交叉验证方法,以下是一个基于scikit-learn库实现的示例代码:
```python
from sklearn.decomposition import KernelPCA
from sklearn.datasets import make_circles
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
# 生成用于测试的数据集
X, y = make_circles(n_samples=100, random_state=42)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
# 定义KPCA模型和SVM分类器
kpca = KernelPCA(kernel='rbf')
svm = SVC()
# 定义Pipeline
pipeline = Pipeline([
('kpca', kpca),
('svm', svm)
])
# 定义参数网格
param_grid = {
'kpca__gamma': [0.1, 1, 10, 100],
'svm__C': [0.1, 1, 10, 100]
}
# 使用GridSearchCV进行交叉验证和网格搜索
grid_search = GridSearchCV(pipeline, param_grid=param_grid, cv=5)
grid_search.fit(X_train, y_train)
# 输出最佳参数
print("Best parameters: ", grid_search.best_params_)
```
在上面的代码中,我们首先生成了一个用于测试的数据集,然后使用train_test_split函数将数据集划分为训练集和测试集。然后,我们定义了一个基于KPCA和SVM的Pipeline,并使用GridSearchCV函数对参数进行交叉验证和网格搜索。最后,我们输出最佳参数。在参数网格中,我们通过修改kpca__gamma参数的值来寻找最优的高斯核参数。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)