x = [random.randint(0, 100) for i in range(1000)] d = set(x) for v in d: print(v, ':', x.count(v))

时间: 2024-02-13 18:04:39 浏览: 83
DOC

python烟花代码.doc

这段代码的作用是统计一个长度为1000,元素范围在0-100之间的随机数列表中每个元素出现的次数,并将结果输出。 具体实现方法是:首先使用列表推导式生成一个长度为1000,元素范围在0-100之间的随机数列表x;然后使用set函数去重,得到列表中所有出现过的元素集合;最后使用for循环遍历集合中的每个元素,并使用列表的count方法统计该元素在列表中出现的次数,并将结果输出。 代码解释如下: ```python import random # 生成一个长度为1000,元素范围在0-100之间的随机数列表 x = [random.randint(0, 100) for i in range(1000)] # 使用set函数去重,得到列表中所有出现过的元素集合 d = set(x) # 遍历集合中的每个元素,并统计该元素在列表中出现的次数,并输出结果 for v in d: print(v, ':', x.count(v)) ``` 输出结果类似于: ``` 0 : 13 1 : 13 2 : 12 3 : 10 4 : 14 5 : 12 6 : 11 7 : 8 8 : 12 9 : 16 ... ``` 其中,每行输出的格式为:元素值 : 出现次数。
阅读全文

相关推荐

假如你是Python老师以下是我的答辩作业,你会问我哪些问题并给出答案import pygame import random # 游戏窗口大小 SCREEN_WIDTH = 800 SCREEN_HEIGHT = 600 # 颜色定义 BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) # 初始化游戏 pygame.init() screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT)) pygame.display.set_caption("Challenging Game") clock = pygame.time.Clock() # 创建玩家矩形 player_rect = pygame.Rect(0, 0, 50, 50) player_rect.centerx = SCREEN_WIDTH // 2 player_rect.centery = SCREEN_HEIGHT // 2 player_speed = 5 # 创建敌人列表 enemies = [] enemy_size = 30 enemy_speed = 2 for _ in range(10): enemy_rect = pygame.Rect(0, 0, enemy_size, enemy_size) enemy_rect.x = random.randint(0, SCREEN_WIDTH - enemy_rect.width) enemy_rect.y = random.randint(0, SCREEN_HEIGHT - enemy_rect.height) enemies.append(enemy_rect) # 创建目标对象 target_rect = pygame.Rect(0, 0, 20, 20) target_rect.x = random.randint(0, SCREEN_WIDTH - target_rect.width) target_rect.y = random.randint(0, SCREEN_HEIGHT - target_rect.height) # 游戏主循环 running = True score = 0 while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False keys = pygame.key.get_pressed() if keys[pygame.K_LEFT] and player_rect.left > 0: player_rect.x -= player_speed if keys[pygame.K_RIGHT] and player_rect.right < SCREEN_WIDTH: player_rect.x += player_speed if keys[pygame.K_UP] and player_rect.top > 0: player_rect.y -= player_speed if keys[pygame.K_DOWN] and player_rect.bottom < SCREEN_HEIGHT: player_rect.y += player_speed # 更新敌人位置 for enemy_rect in enemies: enemy_rect.x += random.randint(-enemy_speed, enemy_speed) enemy_rect.y += random.randint(-enemy_speed, enemy_speed) # 检测玩家与敌人的碰撞 for enemy_rect in enemies: if player_rect.colliderect(enemy_rect): running = False # 检测玩家与目标的碰撞 if player_rect.colliderect(target_rect): score += 1 target_rect.x = random.randint(0, SCREEN_WIDTH - target_rect.width) target_rect.y = random.randint(0, SCREEN_HEIGHT - tar

# 设置屏幕宽高 import random import sys import pygame from pygame import QUIT width = 800 height = 600 # 设置下落速度 speed = [15, 30] # 字母大小范围 size = [5, 30] # code长度范围 LEN = [1, 8] # 随机生成颜色 def randomColor(): return random.randint(0, 255), random.randint(0, 255), random.randint(0, 255) # 随机生成一个速度 def randomSpeed(): return random.randint(speed[0], speed[1]) # 随机生成一个长度 def randomSize(): return random.randint(size[0], size[1]) def randomLen(): return random.randint(LEN[0], LEN[1]) # 随机生成一个位置 def randomPos(): return random.randint(0, width), -20 # 随机生成一个字符串 def randomCode(): return random.choice('qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM1234567890') # 定义代码精灵类 class Code(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self) # 随机字体大小 self.font = pygame.font.Font('./font.ttf', randomSize()) # 随机速度 self.speed = randomSpeed() # 随机长度 self.code = self.getCode() # 创建位图image返回image值,随机颜色 self.image = self.font.render(self.code, True, randomCode()) self.image = self.transform.rotate(self.image, random.randint(87, 93)) self.rect = self.image.get_rect() self.rect.topleft = randomPos() def getCode(self): length = randomLen() code = '' for i in range(length): code += randomCode() return code def updateCode(self): self.rect = self.rect.move(0, self.speed) if self.rect.top > height: self.kill() pygame.init() # 成成主屏幕screen第一个参数是屏幕大小 screen = pygame.display.set_mode((width, height)) # 窗口命名 pygame.display.set_caption("哈哈哈") # 初始化一个clock对象 clock = pygame.time.Clock() codesGroup = pygame.sprite.Group() while True: clock.tick(24) for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit(0) screen.fill((0, 0, 0)) codeobject = Code() codesGroup.add(codeobject) codesGroup.update() codesGroup.draw(screen) pygame.display.update()

import networkx as nx import numpy as np import pandas as pd import matplotlib.pyplot as plt import networkx as nx import random df=pd.read_csv("D:\级联失效\edges.csv") G=nx.from_pandas_edgelist(df,'from','to',create_using=nx.Graph()) nx.draw(G,node_size=300,with_labels=True) As=nx.adjacency_matrix(G) A=As.todense() def f(x): F=4*x*(1-x) return F n=len(A) r=2 ohxs=0.4 step=10 d=np.zeros([n,step]) for i in range(n): d[i,0]=np.sum(A[i]) x_intial=np.zeros([n,step]) for i in range(n): x_intial[i,0]=random.random() np.set_printoptions(precision=5) h_a=100 H=np.zeros([n,step]) D=np.zeros([n,step]) for i in range(n): Deg=0 for k in range(n): if k!=i: Deg=Deg+d[k,0] D[i,0]=Deg H[i,0]=d[i,0]/D[i,0]/h_a fail_scale=np.zeros(step) fail_scale[0]=1 node_rand_id=random.randint(0,n) r=2 x_intial[node_rand_id,0]=x_intial[node_rand_id,0]+r print(x_intial) fail_node=np.zeros(n) fail_node[node_rand_id]=1 print(fail_node) np.seterr(divide='ignore',invalid='ignore') for t in range(1,step): fail_node_id=[idx for (idx,val) in enumerate(fail_node) if val ==1] for i in range(n): sum=0 for j in range(n): sum = sum+A[i,j]*f(x_intial[j,t-1])/d[i] if i in fail_node_id: x_intial[i,t-1]=0 A[i,:]=0 A[:,i]=0 else: x_intial[i,t]=H[i,t-1]*abs((1-ohxs)*f(x_intial[i,t-1])+ohxs*sum) d[i,t]=np.sum(A[i]) Deg=0 for k in range(n): if k!=i: Deg=Deg+d[i,t] D[i,t]=Deg H[i,t]=d[i,t]/D[i,t]/h_a new_fail_id=[idx for (idx,val) in enumerate(x_intial[:,t]) if val>=1] fail_scale[t]=fail_scale[t-1]+len(new_fail_id) fail_node[new_fail_id]=1 x_intial[new_fail_id,t]=x_intial[new_fail_id,t]+r print(H[i,t]) print(fail_node) print(x_intial) plt.plot(fail_scale) plt.show()

代码改进:import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.datasets import make_blobs def distEclud(arrA,arrB): #欧氏距离 d = arrA - arrB dist = np.sum(np.power(d,2),axis=1) #差的平方的和 return dist def randCent(dataSet,k): #寻找质心 n = dataSet.shape[1] #列数 data_min = dataSet.min() data_max = dataSet.max() #生成k行n列处于data_min到data_max的质心 data_cent = np.random.uniform(data_min,data_max,(k,n)) return data_cent def kMeans(dataSet,k,distMeans = distEclud, createCent = randCent): x,y = make_blobs(centers=100)#生成k质心的数据 x = pd.DataFrame(x) m,n = dataSet.shape centroids = createCent(dataSet,k) #初始化质心,k即为初始化质心的总个数 clusterAssment = np.zeros((m,3)) #初始化容器 clusterAssment[:,0] = np.inf #第一列设置为无穷大 clusterAssment[:,1:3] = -1 #第二列放本次迭代点的簇编号,第三列存放上次迭代点的簇编号 result_set = pd.concat([pd.DataFrame(dataSet), pd.DataFrame(clusterAssment)],axis = 1,ignore_index = True) #将数据进行拼接,横向拼接,即将该容器放在数据集后面 clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m): dist = distMeans(dataSet.iloc[i,:n].values,centroids) #计算点到质心的距离(即每个值到质心的差的平方和) result_set.iloc[i,n] = dist.min() #放入距离的最小值 result_set.iloc[i,n+1] = np.where(dist == dist.min())[0] #放入距离最小值的质心标号 clusterChanged = not (result_set.iloc[:,-1] == result_set.iloc[:,-2]).all() if clusterChanged: cent_df = result_set.groupby(n+1).mean() #按照当前迭代的数据集的分类,进行计算每一类中各个属性的平均值 centroids = cent_df.iloc[:,:n].values #当前质心 result_set.iloc[:,-1] = result_set.iloc[:,-2] #本次质心放到最后一列里 return centroids, result_set x = np.random.randint(0,100,size=100) y = np.random.randint(0,100,size=100) randintnum=pd.concat([pd.DataFrame(x), pd.DataFrame(y)],axis = 1,ignore_index = True) #randintnum_test, randintnum_test = kMeans(randintnum,3) #plt.scatter(randintnum_test.iloc[:,0],randintnum_test.iloc[:,1],c=randintnum_test.iloc[:,-1]) #result_test,cent_test = kMeans(data, 4) cent_test,result_test = kMeans(randintnum, 3) plt.scatter(result_test.iloc[:,0],result_test.iloc[:,1],c=result_test.iloc[:,-1]) plt.scatter(cent_test[:,0],cent_test[:,1],color = 'red',marker = 'x',s=100)

# 初始化障碍物和柱子墙位置 obstacle_x = SCREEN_WIDTH pillar_x = [SCREEN_WIDTH + PILLAR_DISTANCE, SCREEN_WIDTH + PILLAR_DISTANCE * 2, SCREEN_WIDTH + PILLAR_DISTANCE * 3] # 游戏循环 while True: # 显示障碍物和柱子墙 draw_obstacle(obstacle_x, obstacle_y, obstacle_width, obstacle_height) for i in range(3): draw_pillar(pillar_x[i], pillar_height[i]) # 移动障碍物和柱子墙 obstacle_x -= OBSTACLE_SPEED for i in range(3): pillar_x[i] -= OBSTACLE_SPEED # 重新生成障碍物和柱子墙 if obstacle_x < -OBSTACLE_WIDTH: obstacle_x = SCREEN_WIDTH obstacle_y = random.randint(0, SCREEN_HEIGHT - OBSTACLE_HEIGHT) for i in range(3): if pillar_x[i] < -PILLAR_WIDTH: pillar_x[i] = SCREEN_WIDTH + PILLAR_DISTANCE * (i + 1) pillar_height[i] = random.randint(0, SCREEN_HEIGHT - PILLAR_GAP) # 初始化小鸟位置和速度 bird_x = BIRD_X bird_y = SCREEN_HEIGHT // 2 bird_v = 0 # 游戏循环 while True: # 监听用户输入 for event in pygame.event.get(): if event.type == pygame.KEYDOWN and event.key == pygame.K_SPACE: bird_v = BIRD_JUMP_SPEED # 移动小鸟 bird_y += bird_v bird_v += BIRD_GRAVITY # 碰撞检测 if bird_x + BIRD_WIDTH > obstacle_x and bird_x < obstacle_x + OBSTACLE_WIDTH \ and (bird_y < obstacle_y or bird_y + BIRD_HEIGHT > obstacle_y + OBSTACLE_HEIGHT): break for i in range(3): if bird_x + BIRD_WIDTH > pillar_x[i] and bird_x < pillar_x[i] + PILLAR_WIDTH \ and (bird_y < pillar_height[i] or bird_y + BIRD_HEIGHT > pillar_height[i] + PILLAR_GAP): break # 显示小鸟 draw_bird(bird_x, bird_y) # 游戏结束 if bird_y < 0 or bird_y + BIRD_HEIGHT > SCREEN_HEIGHT: break请帮我完善这段程序使其能在Python上运行不报错

def generate_midi(generator, output_file, start_sequence): # 加载模型参数 generator.load_weights('weights.hdf5') # 计算音符和和弦的数量 notes = load_midi(start_sequence) pitchnames = sorted(set(notes)) n_vocab = len(set(notes)) # 准备输入序列 sequence_length = 100 note_to_int = dict((note, number) for number, note in enumerate(pitchnames)) network_input = [] for i in range(0, len(notes) - sequence_length, 1): sequence_in = notes[i:i + sequence_length] network_input.append([note_to_int[char] for char in sequence_in]) # 生成 MIDI 文件 start = np.random.randint(0, len(network_input)-1) int_to_note = dict((number, note) for number, note in enumerate(pitchnames)) pattern = network_input[start] prediction_output = [] for note_index in range(500): prediction_input = np.reshape(pattern, (1, len(pattern), 1)) prediction_input = prediction_input / float(n_vocab) prediction = generator.predict(prediction_input, verbose=0) index = np.argmax(prediction) result = int_to_note[index] prediction_output.append(result) pattern.append(index) pattern = pattern[1:len(pattern)] offset = 0 output_notes = [] # 创建音符和和弦对象 for pattern in prediction_output: # 如果是和弦 if ('.' in pattern) or pattern.isdigit(): notes_in_chord = pattern.split('.') notes = [] for current_note in notes_in_chord: new_note = note.Note(int(current_note)) new_note.storedInstrument = instrument.Piano() notes.append(new_note) new_chord = chord.Chord(notes) new_chord.offset = offset output_notes.append(new_chord) # 如果是音符 else: new_note = note.Note(pattern) new_note.offset = offset new_note.storedInstrument = instrument.Piano() output_notes.append(new_note) # 增加偏移量 offset += 0.5 # 创建 MIDI 流对象 midi_stream = stream.Stream(output_notes) # 保存 MIDI 文件 midi_stream.write('midi', fp=output_file)

最新推荐

recommend-type

A级景区数据文件json

A级景区数据文件json
recommend-type

使用Java编写的坦克大战小游戏.zip学习资料

python 使用Java编写的坦克大战小游戏.zip学习资料
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001