import os import numpy as np from PIL import Image from sklearn.cluster import DBSCAN from sklearn.manifold import TSNE from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input # 加载 ResNet50 模型 model = ResNet50(weights='imagenet', include_top=False) # 加载并预处理图片,提取特征向量 features = [] for filename in os.listdir('D:/wjd/2'): if filename.endswith('.png'): img = Image.open(os.path.join('D:/wjd/2', filename)) img = img.convert('RGB') # 将 RGBA 转换为 RGB img = img.resize((224, 224)) x = np.array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) feature = model.predict(x) feature = np.squeeze(feature) features.append(feature) # 将特征向量转换为 numpy 数组 features = np.array(features) # 将特征向量进行降维处理 tsne = TSNE(n_components=2) features_tsne = tsne.fit_transform(features) # 将特征向量进行聚类,自动确定聚类的数量 dbscan = DBSCAN(eps=5, min_samples=2).fit(features_tsne) n_clusters = len(set(dbscan.labels_)) # 将每张图片分配到对应的聚类中 for i, label in enumerate(dbscan.labels_): filename = os.listdir('D:/wjd/2')[i] print('{} belongs to cluster {}'.format(filename, label)),可以将降维算法替换成LLE算法吗,其它的都不变
时间: 2024-03-03 13:50:40 浏览: 75
可以将TSNE算法替换为LLE算法,只需要用LLE算法替代TSNE算法即可,代码中的其它部分不需要改变。可以参考以下代码:
```
import os
import numpy as np
from PIL import Image
from sklearn.cluster import DBSCAN
from sklearn.manifold import LocallyLinearEmbedding # 加载 LocallyLinearEmbedding 模型
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
# 加载 ResNet50 模型
model = ResNet50(weights='imagenet', include_top=False)
# 加载并预处理图片,提取特征向量
features = []
for filename in os.listdir('D:/wjd/2'):
if filename.endswith('.png'):
img = Image.open(os.path.join('D:/wjd/2', filename))
img = img.convert('RGB') # 将 RGBA 转换为 RGB
img = img.resize((224, 224))
x = np.array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
feature = model.predict(x)
feature = np.squeeze(feature)
features.append(feature)
# 将特征向量转换为 numpy 数组
features = np.array(features)
# 将特征向量进行降维处理
lle = LocallyLinearEmbedding(n_components=2) # 使用LLE算法进行降维
features_lle = lle.fit_transform(features)
# 将特征向量进行聚类,自动确定聚类的数量
dbscan = DBSCAN(eps=5, min_samples=2).fit(features_lle)
n_clusters = len(set(dbscan.labels_))
# 将每张图片分配到对应的聚类中
for i, label in enumerate(dbscan.labels_):
filename = os.listdir('D:/wjd/2')[i]
print('{} belongs to cluster {}'.format(filename, label))
```
需要注意的是,LLE算法的参数设置可能需要根据具体的数据集进行调整,以达到更好的结果。
阅读全文