layers.py import numpy as np ''' 全连接层:矩阵变换,获取对应目标相同的行与列 输入x: 2*32*16*16 输入x_row: 2*8192 超参w:8192*100 输出:矩阵乘法 2*8192 ->8192*100 =>2*100 '''

时间: 2023-08-03 09:06:36 浏览: 41
这段代码是一个注释,描述了一个全连接层的实现。根据注释中的描述,这个全连接层的输入数据 `x` 的形状是 (2, 32, 16, 16),其中 2 是样本数,32 是通道数,16*16 是每个通道的特征数。输入数据 `x` 会被重塑为一个二维矩阵 `x_row`,其中每行是一个样本,每列是一个特征。`x_row` 的形状是 (2, 8192),其中 8192 = 32*16*16。超参 `w` 的形状是 (8192, 100),其中 100 是输出的特征数。 在这个全连接层中,我们需要将输入数据 `x_row` 与超参 `w` 进行矩阵乘法运算,得到一个输出矩阵。输出矩阵的形状是 (2, 100),其中每行是一个样本,每列是一个输出特征。这个全连接层的作用是将输入数据 `x` 中的每个样本映射到一个长度为 100 的向量空间中,从而使得不同的样本之间可以进行比较和分类。
相关问题

import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten # 加载数据 data = pd.read_csv('3c_left_1-6.csv') # 将数据转换为三维时序信号 x = data.iloc[:, 0:3].values x = x.reshape(x.shape[0], x.shape[1], 1) # 添加噪声 noise = np.random.normal(0, 1, x.shape) x_noise = x + noise # 构建模型 model = Sequential() model.add(Conv1D(32, kernel_size=3, activation='relu', input_shape=(3, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Conv1D(64, kernel_size=3, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(3)) # 编译模型 model.compile(loss='mse', optimizer='adam') # 训练模型 model.fit(x_noise, x, epochs=50, batch_size=32) # 预测结果 x_pred = model.predict(x_noise) # 计算SNR、MSE、PSNR snr = 10 * np.log10(np.sum(x ** 2) / np.sum((x - x_pred) ** 2)) mse = np.mean((x - x_pred) ** 2) psnr = 10 * np.log10((np.max(x) ** 2) / mse) # 保存结果 result = pd.DataFrame({'SNR': [snr], 'MSE': [mse], 'PSNR': [psnr]}) result.to_csv('result.csv', index=False) 报错为File "G:\project2\gaussian.py", line 20, in <module> model.add(MaxPooling1D(pool_size=2))ValueError: Negative dimension size caused by subtracting 2 from 1 for 'max_pooling1d_1/MaxPool' (op: 'MaxPool') with input shapes: [?,1,1,32].

这个错误是因为在添加第一个池化层后,输出张量的空间维度被缩小到了1,而在添加第二个池化层时,池化窗口大小为2,会导致输出张量的空间维度变成负数。解决方法是将第一个池化层的池化窗口大小改为1或者不使用池化层。修改代码如下: ``` import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten # 加载数据 data = pd.read_csv('3c_left_1-6.csv') # 将数据转换为三维时序信号 x = data.iloc[:, 0:3].values x = x.reshape(x.shape[0], x.shape[1], 1) # 添加噪声 noise = np.random.normal(0, 1, x.shape) x_noise = x + noise # 构建模型 model = Sequential() model.add(Conv1D(32, kernel_size=3, activation='relu', input_shape=(3, 1))) model.add(Conv1D(64, kernel_size=3, activation='relu')) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(3)) # 编译模型 model.compile(loss='mse', optimizer='adam') # 训练模型 model.fit(x_noise, x, epochs=50, batch_size=32) # 预测结果 x_pred = model.predict(x_noise) # 计算SNR、MSE、PSNR snr = 10 * np.log10(np.sum(x ** 2) / np.sum((x - x_pred) ** 2)) mse = np.mean((x - x_pred) ** 2) psnr = 10 * np.log10((np.max(x) ** 2) / mse) # 保存结果 result = pd.DataFrame({'SNR': [snr], 'MSE': [mse], 'PSNR': [psnr]}) result.to_csv('result.csv', index=False) ```

import pandas as pd import numpy as np import matplotlib.pyplot as plt from keras.models import Model, Input from keras.layers import Conv1D, BatchNormalization, Activation, Add, Flatten, Dense from keras.optimizers import Adam # 读取CSV文件 data = pd.read_csv("3c_left_1-6.csv", header=None) # 将数据转换为Numpy数组 data = data.values # 定义输入形状 input_shape = (data.shape[1], 1) # 定义深度残差网络 def residual_network(inputs): # 第一层卷积层 x = Conv1D(32, 3, padding="same")(inputs) x = BatchNormalization()(x) x = Activation("relu")(x) # 残差块 for i in range(5): y = Conv1D(32, 3, padding="same")(x) y = BatchNormalization()(y) y = Activation("relu")(y) y = Conv1D(32, 3, padding="same")(y) y = BatchNormalization()(y) y = Add()([x, y]) x = Activation("relu")(y) # 全局池化层和全连接层 x = Flatten()(x) x = Dense(128, activation="relu")(x) x = Dense(data.shape[1], activation="linear")(x) outputs = Add()([x, inputs]) return outputs # 构建模型 inputs = Input(shape=input_shape) outputs = residual_network(inputs) model = Model(inputs=inputs, outputs=outputs) # 编译模型 model.compile(loss="mean_squared_error", optimizer=Adam()) # 训练模型 model.fit(data[..., np.newaxis], data[..., np.newaxis, np.newaxis], epochs=100) # 预测数据 predicted_data = model.predict(data[..., np.newaxis]) predicted_data = np.squeeze(predicted_data) # 可视化去噪前后的数据 fig, axs = plt.subplots(3, 1, figsize=(12, 8)) for i in range(3): axs[i].plot(data[:, i], label="Original Signal") axs[i].plot(predicted_data[:, i], label="Denoised Signal") axs[i].legend() plt.savefig("denoised_signal.png") # 将去噪后的数据保存为CSV文件 df = pd.DataFrame(predicted_data, columns=["x", "y", "z"]) df.to_csv("denoised_data.csv", index=False)报错为Traceback (most recent call last): File "G:\project2\main.py", line 51, in <module> model.fit(data[..., np.newaxis], data[..., np.newaxis, np.newaxis], epochs=100) File "G:\python\envs\tensorflow\lib\site-packages\keras\engine\training.py", line 1154, in fit batch_size=batch_size) File "G:\python\envs\tensorflow\lib\site-packages\keras\engine\training.py", line 621, in _standardize_user_data exception_prefix='target') File "G:\python\envs\tensorflow\lib\site-packages\keras\engine\training_utils.py", line 135, in standardize_input_data 'with shape ' + str(data_shape)) ValueError: Error when checking target: expected add_6 to have 3 dimensions, but got array with shape (575206, 3, 1, 1)

这个错误是因为模型的输出是三维的,但是目标数据的维度不匹配。在训练模型时,你传入的目标数据的维度应该是 (batch_size, data_shape),而你传入的数据的维度是 (batch_size, data_shape, 1, 1)。你可以尝试将目标数据的维度改为 (batch_size, data_shape, 1)。修改代码如下: ``` model.fit(data[..., np.newaxis], data[..., np.newaxis], epochs=100) ``` 改为: ``` model.fit(data[..., np.newaxis], data[..., np.newaxis], epochs=100) ``` 另外,你在定义模型时,最后一层的输出是通过 Add()([x, inputs]) 得到的,这个操作会将输入和输出相加,如果你想要得到去噪后的信号,可以将最后一层的输出改为只有 x,即: ``` outputs = x ``` 这样最后得到的就是去噪后的信号了。

相关推荐

import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense data = pd.read_csv('车辆:274序:4结果数据.csv') x = data[['车头间距', '原车道前车速度']].values y = data['本车速度'].values train_size = int(len(x) * 0.7) test_size = len(x) - train_size x_train, x_test = x[0:train_size,:], x[train_size:len(x),:] y_train, y_test = y[0:train_size], y[train_size:len(y)] from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) model = Sequential() model.add(LSTM(50, input_shape=(2, 1))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') history = model.fit(x_train.reshape(-1, 2, 1), y_train, epochs=100, batch_size=32, validation_data=(x_test.reshape(-1, 2, 1), y_test)) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper right') plt.show() train_predict = model.predict(x_train.reshape(-1, 2, 1)) test_predict = model.predict(x_test.reshape(-1, 2, 1)) train_predict = scaler.inverse_transform(train_predict) train_predict = train_predict.reshape(-1) # 将结果变为一维数组 y_train = scaler.inverse_transform(y_train.reshape(-1, 1)).reshape(-1) # 将结果变为一维数组 test_predict = scaler.inverse_transform(test_predict) y_test = scaler.inverse_transform([y_test]) plt.plot(y_train[0], label='train') plt.plot(train_predict[:,0], label='train predict') plt.plot(y_test[0], label='test') plt.plot(test_predict[:,0], label='test predict') plt.legend() plt.show()报错Traceback (most recent call last): File "C:\Users\马斌\Desktop\NGSIM_data_processing\80s\lstmtest.py", line 42, in <module> train_predict = scaler.inverse_transform(train_predict) File "D:\python\python3.9.5\pythonProject\venv\lib\site-packages\sklearn\preprocessing\_data.py", line 541, in inverse_transform X -= self.min_ ValueError: non-broadcastable output operand with shape (611,1) doesn't match the broadcast shape (611,2)

import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense # 读取Excel文件 data = pd.read_excel('D://数据1.xlsx', sheet_name='8') # 把数据分成输入和输出 X = data.iloc[:, 0:8].values y = data.iloc[:, 0:8].values # 对输入和输出数据进行归一化 scaler_X = MinMaxScaler(feature_range=(0, 4)) X = scaler_X.fit_transform(X) scaler_y = MinMaxScaler(feature_range=(0, 4)) y = scaler_y.fit_transform(y) # 将数据集分成训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0) # 创建神经网络模型 model = Sequential() model.add(Dense(units=8, input_dim=8, activation='relu')) model.add(Dense(units=64, activation='relu')) model.add(Dense(units=8, activation='relu')) model.add(Dense(units=8, activation='linear')) # 编译模型 model.compile(loss='mean_squared_error', optimizer='sgd') # 训练模型 model.fit(X_train, y_train, epochs=230, batch_size=1000) # 评估模型 score = model.evaluate(X_test, y_test, batch_size=1258) print('Test loss:', score) # 使用训练好的模型进行预测 X_test_scaled = scaler_X.transform(X_test) y_pred = model.predict(X_test_scaled) # 对预测结果进行反归一化 y_pred_int = scaler_y.inverse_transform(y_pred).round().astype(int) # 计算预测的概率 mse = ((y_test - y_pred) ** 2).mean(axis=None) probabilities = 1 / (1 + mse - ((y_pred_int - y_test) ** 2).mean(axis=None)) # 构建带有概率的预测结果 y_pred_prob = pd.DataFrame(y_pred_int, columns=data.columns[:8]) y_pred_prob['Probability'] = probabilities # 过滤掉和小于6或大于24的行 row_sums = np.sum(y_pred, axis=1) y_pred_filtered = y_pred[(row_sums >= 6) & (row_sums <= 6), :] # 去除重复的行 y_pred_filtered = y_pred_filtered.drop_duplicates() # 打印带有概率的预测结果 print('Predicted values with probabilities:') print(y_pred_filtered)显示Traceback (most recent call last): File "D:\pycharm\PyCharm Community Edition 2023.1.1\双色球8分区预测模型.py", line 61, in <module> y_pred_filtered = y_pred_filtered.drop_duplicates() AttributeError: 'numpy.ndarray' object has no attribute 'drop_duplicates'怎么修改

import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder, OneHotEncoder from keras.models import Sequential from keras.layers import Dense from keras.callbacks import History import matplotlib.pyplot as plt # 读取数据集 data = pd.read_csv('data-04-zoo.csv', header=None) # 切分x和y x = data.iloc[:, :-1].values y = data.iloc[:, -1].values # 对y标签进行独热编码处理 label_encoder = LabelEncoder() y = label_encoder.fit_transform(y) onehot_encoder = OneHotEncoder(sparse=False) y = y.reshape(len(y), 1) y = onehot_encoder.fit_transform(y) # 搭建网络模型 model = Sequential() model.add(Dense(16, input_dim=16, activation='relu')) model.add(Dense(8, activation='relu')) model.add(Dense(7, activation='softmax')) # 模型配置 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 history = History() model.fit(x, y, epochs=200, batch_size=16, validation_split=0.2, callbacks=[history]) # 绘制训练集和验证集的损失曲线 plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend(['Train', 'Validation'], loc='upper left') plt.show() # 绘制训练集和验证集的准确率曲线 plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model Accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend(['Train', 'Validation'], loc='upper left') plt.show() # 保存模型 model.save('model1.h5')from google.protobuf.internal import builder as _builder ImportError: cannot import name 'builder' from 'google.protobuf.internal' (C:\ProgramData\anaconda3\envs\demo\lib\site-packages\google\protobuf\internal\__init__.py)

import tensorflow as tf import numpy as np from keras import Model from keras.layers import * from sklearn.model_selection import train_test_split in_flow= np.load("X_in_30od.npy") out_flow= np.load("X_out_30od.npy") c1 = np.load("X_30od.npy") D1 = np.load("Y_30od.npy") in_flow = Reshape(in_flow, (D1.shape[0], 5, 109, 109)) out_flow = Reshape(out_flow, (D1.shape[0], 5, 109)) c1 = Reshape(c1, (D1.shape[0], 5, 109)) X_train, X_test, y_train, y_test = train_test_split((in_flow, out_flow, c1), D1, test_size=0.2, random_state=42) X_train, X_val, y_train, y_val = train_test_split(X_train,y_train, test_size=0.2, random_state=42) input_od=Input(shape=(5,109,109)) x1=Reshape((5,109,109,1),input_shape=(5,109,109))(input_od) x1=ConvLSTM2D(filters=64,kernel_size=(3,3),activation='relu',padding='same',input_shape=(5,109,109,1))(x1) x1=Dropout(0.2)(x1) x1=Dense(1)(x1) x1=Reshape((109,109))(x1) input_inflow=Input(shape=(5,109)) x2=Permute((2,1))(input_inflow) x2=LSTM(109,return_sequences=True,activation='sigmoid')(x2) x2=Dense(109,activation='sigmoid')(x2) x2=tf.multiply(x1,x2) x2=Dense(109,activation='sigmoid')(x2) input_inflow2=Input(shape=(5,109)) x3=Permute([2,1])(input_inflow2) x3=LSTM(109,return_sequences=True,activation='sigmoid')(x3) x3=Dense(109,activation='sigmoid')(x3) x3 = Reshape((109, 109))(x3) x3=tf.multiply(x1,x3) x3=Dense(109,activation='sigmoid')(x3) mix=Add()([x2,x3]) mix=Bidirectional(LSTM(109,return_sequences=True,activation='sigmoid'))(mix) mix=Dense(109,activation='sigmoid')(mix) model= Model(inputs=[input_od,input_inflow,input_inflow2],outputs=[mix]) model.compile(optimizer='adam', loss='mean_squared_error') history = model.fit([X_train[:,0:5,:,:], X_train[:,5:10,:], X_train[:,10:15,:]], y_train, validation_data=([X_val[:,0:5,:,:], X_val[:,5:10,:], X_val[:,10:15,:]], y_val), epochs=10, batch_size=32) test_loss = model.evaluate([X_test[:,0:5,:,:], X_test[:,5:10,:], X_test[:,10:15,:]], y_test) print("Test loss:", test_loss) 程序的运行结果为Traceback (most recent call last): File "C:\Users\liaoshuyu\Desktop\python_for_bigginer\5.23.py", line 11, in <module> in_flow = Reshape(in_flow, (D1.shape[0], 5, 109, 109)) TypeError: Reshape.__init__() takes 2 positional arguments but 3 were given 怎么修改

将以下Python代码转化为MATLAB代码并在每行上 标明注释: # -- coding: utf-8 -- from keras.models import Model from keras.layers import Conv2D, UpSampling2D, Input, concatenate, MaxPooling2D from keras.optimizers import Adam import numpy as np #from keras import backend as K #import matplotlib.pyplot as plt #import scipy.io as sio import h5py matfn='train_random_1000.mat' #with h5py.File(matfn, 'r') as f: # f.keys() # matlabdata.mat 中的变量名 data = h5py.File(matfn) W_train = data['w'].value X_train = data['L_vel'].value Y_train = data['H_vel'].value W_train = W_train.transpose((0,2,1)) X_train = X_train.transpose((0,2,1)) Y_train = Y_train.transpose((0,2,1)) W_train = W_train.reshape(1000, 800, 800, 1) X_train = X_train.reshape(1000, 100, 100, 1) Y_train = Y_train.reshape(1000, 800, 800, 1) inputs = Input(shape=(100,100,1)) w_inputs = Input(shape=(800,800,1)) upSam = UpSampling2D(size = (8,8))(inputs) up = concatenate([upSam, w_inputs], axis=3) conv1 = Conv2D(filters = 8,kernel_size=(3,3), activation = 'relu', padding = 'Same')(up) conv1 = Conv2D(filters = 8,kernel_size=(3,3), activation = 'relu', padding = 'Same')(conv1) pool1 = MaxPooling2D(pool_size=(2,2))(conv1) conv2 = Conv2D(16, (3,3), activation = 'relu', padding='same')(pool1) conv2 = Conv2D(16, (3,3), activation = 'relu', padding='same')(conv2) pool2 = MaxPooling2D(pool_size=(2,2))(conv2) conv3 = Conv2D(32, (3,3), activation = 'relu', padding='same')(pool2) conv3 = Conv2D(32, (3,3), activation = 'relu', padding='same')(conv3) up4 = concatenate([UpSampling2D(size=(2,2))(conv3), conv2], axis=3) conv4 = Conv2D(16, (3,3), activation = 'relu', padding='same')(up4) conv4 = Conv2D(16, (3,3), activation = 'relu', padding='same')(conv4) up5 = concatenate([UpSampling2D(size=(2,2))(conv4), conv1], axis=3) conv5 = Conv2D(8, (3,3), activation = 'relu', padding='same')(up5) conv5 = Conv2D(8, (3,3), activation = 'relu', padding='same')(conv5) conv6 = Conv2D(4, (3,3), padding='same')(conv5) conv7 = Conv2D(2,(3,3),padding = 'same')(conv6) conv8 = Conv2D(1,(3,3),padding = 'same')(conv7) model1 = Model(inputs=[inputs,w_inputs], outputs=[conv8]) optimizer = Adam(lr = 0.001, decay=0.0) model1.compile(loss='mean_squared_error', optimizer=optimizer) model1.fit([X_train, W_train],Y_train,batch_size=10,epochs=30,shuffle=True,verbose=1,validation_split=0.2) # #result = model1.predict([X_train, W_train],batch_size=1) #resultfile = 'result1.mat' #sio.savemat(resultfile, {'result':result}) model_json = model1.to_json() with open("HRRM_model1.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 model1.save_weights("HRRM_model1.h5") print("Saved model to disk")

最新推荐

recommend-type

六首页数字藏品NFT交易网React NextJS网站模板 六首页数字藏品nft交易网反应NextJS网站模板

六首页数字藏品NFT交易网React NextJS网站模板 六首页数字藏品nft交易网反应NextJS网站模板
recommend-type

wireshark安装教程入门

wireshark安装教程入门
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望