Cross Entropy Loss
时间: 2024-06-06 15:10:03 浏览: 162
Cross Entropy Loss is a commonly used loss function in machine learning, especially in classification tasks. It measures the dissimilarity between the predicted probability distribution and the actual probability distribution of the target class. The formula for calculating cross entropy loss is often defined as follows:
L(y, ŷ) = -Σ(yi * log(ŷi))
where y is the true probability distribution and ŷ is the predicted probability distribution. This loss function penalizes the model more heavily for making larger errors in predicting the true class probabilities.
相关问题
crossentropyloss
`CrossEntropyLoss`是PyTorch中的一种损失函数,通常用于多分类问题中,特别是分类标签不是one-hot编码的情况。其计算方式是将softmax函数的输出和真实标签之间的交叉熵作为损失函数,即:
$$
\operatorname{loss}(x, y) = -\frac{1}{N} \sum_{i=1}^{N} y_i \log \left(\frac{\exp(x_i)}{\sum_{j=1}^{C} \exp(x_j)}\right)
$$
其中,$x$是模型的输出,$y$是真实标签,$N$是样本数量,$C$是分类数。
在PyTorch中,使用`CrossEntropyLoss`时,一般需要将模型的输出进行softmax变换,然后将输出和真实标签传入该函数即可计算损失值。例如:
```python
import torch.nn as nn
# 假设模型的输出为output,真实标签为target
criterion = nn.CrossEntropyLoss()
loss = criterion(output, target)
```
`CrossEntropyLoss`还可以接受一些参数,例如`weight`参数用于给不同的类别赋权重,`ignore_index`参数用于指定忽略某个类别等等。具体可参考PyTorch官方文档。
CrossEntropyLoss
CrossEntropyLoss 是一个常用的损失函数,用于分类问题中。它的计算方式是将预测值与真实值之间的差异转化为一个数值,用于评估模型的性能。在深度学习中,CrossEntropyLoss 通常与 Softmax 函数一起使用,用于多分类问题。
阅读全文