0-1背包问题-分支限界法(优先队列分支限界法)Java代码
时间: 2023-11-06 17:02:22 浏览: 166
以下是0-1背包问题-分支限界法(优先队列分支限界法)Java代码的实现:
首先需要定义一个Item类,用来存储每一个物品的价值和重量:
```
class Item {
int value;
int weight;
double ratio;
Item(int value, int weight) {
this.value = value;
this.weight = weight;
this.ratio = (double) value / weight;
}
}
```
然后需要实现一个比较器,用来将Item按照价值重量比从大到小排序:
```
class ItemComparator implements Comparator<Item> {
public int compare(Item a, Item b) {
if (b.ratio > a.ratio) {
return 1;
} else if (b.ratio < a.ratio) {
return -1;
} else {
return 0;
}
}
}
```
接下来就是主要的解法实现,使用优先队列进行分支限界法:
```
class Solution {
public int knapsack(int[] values, int[] weights, int maxWeight) {
int n = values.length;
Item[] items = new Item[n];
for (int i = 0; i < n; i++) {
items[i] = new Item(values[i], weights[i]);
}
Arrays.sort(items, new ItemComparator()); //按照价值重量比从大到小排序
PriorityQueue<Node> queue = new PriorityQueue<>(new NodeComparator()); //用优先队列保存每个节点
queue.offer(new Node(0, 0, 0));
while (!queue.isEmpty()) {
Node cur = queue.poll();
if (cur.level == n) { //已经处理完所有物品
return cur.value;
}
int weight = cur.weight, value = cur.value, level = cur.level;
Item item = items[level];
//计算上界
double bound = value + (double) (maxWeight - weight) * item.ratio;
if (bound <= maxWeight) { //上界小于最大重量,放入全部物品
queue.offer(new Node(value + item.value, weight + item.weight, level + 1));
} else { //上界大于等于最大重量,只放入一部分物品
queue.offer(new Node(value + (int) (item.ratio * (maxWeight - weight)), maxWeight, level + 1)); //放入剩余空间能放下的那部分物品
}
queue.offer(new Node(value, weight, level + 1)); //不放入这个物品
}
return 0; //无解
}
}
class Node {
int value;
int weight;
int level;
Node(int value, int weight, int level) {
this.value = value;
this.weight = weight;
this.level = level;
}
}
class NodeComparator implements Comparator<Node> {
public int compare(Node a, Node b) {
return b.value - a.value; //按照价值从大到小排序
}
}
```
在任何时候,这个解法都只会处理少量的节点,因此时间复杂度为O(nlogn)。(其中n为物品数量)
阅读全文