if has_test: test_texts = np.array(test_df['text']).tolist()这段代码是什么意思
时间: 2024-02-17 11:03:07 浏览: 123
这段代码是用来判断是否有测试数据需要进行特征提取。如果`has_test`参数为`True`,则表示有测试数据需要进行特征提取,此时将测试数据中的文本内容存储在`test_texts`变量中;如果`has_test`参数为`False`,则表示没有测试数据需要进行特征提取,此时不需要存储测试数据的文本内容。
具体来说,`np.array(test_df['text'])`是将`test_df`中的`text`列转换为一个`numpy`数组,然后使用`.tolist()`方法将其转换为Python列表。如果`has_test`参数为`True`,则将该列表存储在`test_texts`变量中。这样做的目的是为了在后续的特征提取中,能够同时处理训练数据和测试数据。
例如,在下面的代码中,当`has_test`参数为`True`时,可以同时对训练数据和测试数据进行特征提取:
```python
train_features, test_features = feature_extracter(train_df, test_df, binary_flag=True, m_features=5000, has_test=True)
```
此时,`train_features`变量存储训练数据的特征矩阵,`test_features`变量存储测试数据的特征矩阵。如果`has_test`参数为`False`,则只会返回训练数据的特征矩阵。
相关问题
def evaluate(config, model, data_iter, test=False): model.eval() loss_total = 0 predict_all = np.array([], dtype=int) labels_all = np.array([], dtype=int) with torch.no_grad(): for texts, labels in data_iter: outputs = model(texts) loss = F.cross_entropy(outputs, labels) loss_total += loss labels = labels.data.cpu().numpy() predic = torch.max(outputs.data, 1)[1].cpu().numpy() labels_all = np.append(labels_all, labels) predict_all = np.append(predict_all, predic) acc = metrics.accuracy_score(labels_all, predict_all) if test: report = metrics.classification_report(labels_all, predict_all, target_names=config.class_list, digits=4) confusion = metrics.confusion_matrix(labels_all, predict_all) return acc, loss_total / len(data_iter), report, confusion return acc, loss_total / len(data_iter)
这是一个用于模型评估的函数,输入参数包括配置文件config、模型model、数据迭代器data_iter以及一个布尔值test,表示是否进行测试。函数首先将模型设为评估模式(eval()),然后在数据迭代器上进行循环,对每个文本进行模型预测并计算损失。随后使用Numpy库将真实标签和预测标签存储下来,最后使用Scikit-learn库计算模型的准确率。如果test为True,则同时计算分类报告和混淆矩阵并返回。如果test为False,则只返回准确率和平均损失。
tokenizer = Tokenizer(num_words=max_words) tokenizer.fit_on_texts(data['text']) sequences = tokenizer.texts_to_sequences(data['text']) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) data = pad_sequences(sequences,maxlen=maxlen) labels = np.array(data[:,:1]) print('Shape of data tensor:',data.shape) print('Shape of label tensor',labels.shape) indices = np.arange(data.shape[0]) np.random.shuffle(indices) data = data[indices] labels = labels[indices] x_train = data[:traing_samples] y_train = data[:traing_samples] x_val = data[traing_samples:traing_samples+validation_samples] y_val = data[traing_samples:traing_samples+validation_samples] model = Sequential() model.add(Embedding(max_words,100,input_length=maxlen)) model.add(Flatten()) model.add(Dense(32,activation='relu')) model.add(Dense(10000,activation='sigmoid')) model.summary() model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history = model.fit(x_train,y_train, epochs=1, batch_size=128, validation_data=[x_val,y_val]) import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epoachs = range(1,len(acc) + 1) plt.plot(epoachs,acc,'bo',label='Training acc') plt.plot(epoachs,val_acc,'b',label = 'Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epoachs,loss,'bo',label='Training loss') plt.plot(epoachs,val_loss,'b',label = 'Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() max_len = 10000 x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_len) x_test = data[10000:,0:] x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_len) # 将标签转换为独热编码 y_train = np.eye(2)[y_train] y_test = data[10000:,:1] y_test = np.eye(2)[y_test]
这段代码中存在几个问题:
1. `labels` 的赋值有误。应该是 `labels = np.array(data[:, 1:])`,因为标签是从第二列开始的。
2. `validation_data` 的格式有误。应该是 `validation_data=(x_val, y_val)`,而不是 `validation_data=[x_val, y_val]`。
3. 在使用 `Sequential` 模型时,需要指定输入的维度。这里应该是 `model.add(Dense(10000, activation='sigmoid', input_dim=maxlen))`,而不是 `model.add(Dense(10000, activation='sigmoid'))`。
4. 绘制图表时,应该使用 `val_acc` 和 `val_loss`,而不是 `test_acc` 和 `test_loss`。
5. 在将标签转换为独热编码时,应该使用 `y_train[:, 0]` 和 `y_test[:, 0]`,而不是 `y_train` 和 `y_test`。
以下是修改后的代码:
```python
tokenizer = Tokenizer(num_words=max_words)
tokenizer.fit_on_texts(data['text'])
sequences = tokenizer.texts_to_sequences(data['text'])
word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))
data = pad_sequences(sequences, maxlen=maxlen)
labels = np.array(data[:, 1:])
print('Shape of data tensor:', data.shape)
print('Shape of label tensor', labels.shape)
indices = np.arange(data.shape[0])
np.random.shuffle(indices)
data = data[indices]
labels = labels[indices]
x_train = data[:training_samples]
y_train = labels[:training_samples]
x_val = data[training_samples:training_samples+validation_samples]
y_val = labels[training_samples:training_samples+validation_samples]
model = Sequential()
model.add(Embedding(max_words, 100, input_length=maxlen))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(Dense(10000, activation='sigmoid', input_dim=maxlen))
model.summary()
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['acc'])
history = model.fit(x_train, y_train,
epochs=1,
batch_size=128,
validation_data=(x_val, y_val))
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
max_len = 10000
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_len)
x_test = data[10000:, 0:]
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_len)
# 将标签转换为独热编码
y_train = np.eye(2)[y_train[:, 0]]
y_test = data[10000:, 1:]
y_test = np.eye(2)[y_test[:, 0]]
```
阅读全文