import numpy as np a = np.arange(12).reshape(3, 4) print(np.sum(a[[0, 2], 2:]))
时间: 2023-06-25 15:04:02 浏览: 357
这段代码使用了NumPy库,首先创建了一个3行4列的数组a,然后使用切片和索引获取了第1行和第3行的第3列及其之后的所有元素,并计算它们的总和。具体来说,a[[0,2], 2:]获取了第1行和第3行的第3列及其之后的所有元素,即[[2 3] [10 11]],然后使用np.sum()函数计算这个数组的总和,结果为16。因此,代码输出16。
相关问题
补全如下代码,打印其中非NaN变量的数量。 import pandas as pd import numpy as np a = pd.DataFrame(np.arange(20).reshape(4,5)) b = pd.DataFrame(np.arange(16).reshape(4,4)) print((a+b).______())
可以使用 count() 方法来统计非缺失值的数量,因为 NaN 在进行加法运算时会被视为缺失值。
所以,代码应该为:
```python
print((a + b).count().sum())
```
其中,`count()` 方法返回的是一个 Series,它的每个元素代表了对应列中的非缺失值数量,最后通过 `sum()` 方法将所有列的非缺失值数量相加得到总数。
#设置参数 p=20 n=5000 beta=np.arange(p) # 回归系数beta # 以数组形式返回给定区间内均匀间隔的值 #生成X X=np.random.normal(0,1,size=(n,p)) # 从二项分布中抽取样本,形式:(n,p) epsilon = np.random.normal(size=n) # 随机噪声epsilon?? #生成Y Y=np.zeros(n) #初始化Y #返回来一个给定形状和类型的用0填充的数组 Y[epsilon + np.dot(X, beta).reshape(-1) > 0] = 1 data = np.concatenate((X, Y.reshape(-1, 1)), axis=1) # 将特征矩阵X和标签Y合并起来,作为训练数据 import numpy as np def sigmoid(x): return 1 / (1 + np.exp(-x)) def log_likelihood(beta, x, y): """ 计算logistic回归的对数似然函数 :param beta: 回归系数 :param x: 特征矩阵 :param y: 标签 :return: 对数似然函数值 """ f = np.sum(y*np.log(sigmoid(np.dot(x, beta))) + (1-y)*np.log(1-sigmoid(np.dot(x, beta)))) return -f print(log_likelihood(beta,X,Y))
这段代码是使用Python实现的逻辑回归的对数似然函数,其中X是特征矩阵,Y是标签。函数中首先调用sigmoid函数计算逻辑回归的预测值,然后使用对数似然函数计算逻辑回归的对数似然值。最终返回的是对数似然函数的相反数。
在这段代码中,我们使用了numpy中的dot函数来计算矩阵乘法,使用了numpy中的exp函数来计算指数函数,使用了numpy中的sum函数来计算矩阵元素的和。同时,我们还使用了Python中的log函数来计算对数值。
如果要运行这段代码,需要先定义X和Y的值,可以使用np.random.normal函数生成服从正态分布的随机数作为X和epsilon,然后根据预先设定的beta值计算Y。
最后,我们可以调用log_likelihood函数并传入相应的参数,即回归系数beta、特征矩阵X和标签Y,来计算对数似然函数的值。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044736.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)