query, key, value = [l(x).view(nbatches, -1,self.h, self.d_k).transpose(1,2) for l,x in zip(self.linears, (query, key, value))] 详细解释这行代码,解释各个参数
时间: 2024-04-09 12:29:49 浏览: 77
这行代码是一个列表推导式,用于将输入的query、key和value通过线性变换后进行维度调整和转置操作。
首先,我们需要明确一些变量的含义:
- `l` 是一个线性变换函数,它会将输入的张量进行线性变换。
- `x` 是输入的张量,可以是query、key或value。
接下来,我们来逐步解释代码的执行过程:
1. `zip(self.linears, (query, key, value))` 将self.linears和(query, key, value)这三个参数进行打包,返回一个元组的迭代器。这里假设self.linears是一个包含三个线性变换函数的列表。
2. `(l(x).view(nbatches, -1, self.h, self.d_k)` 对每个元组中的x进行线性变换,并使用`.view()`方法对结果进行维度调整。其中,`nbatches`表示批次大小,`self.h`表示头数,`self.d_k`表示每个头的维度大小。
3. `.transpose(1,2)` 对调整维度后的结果进行转置操作,将维度1和维度2进行交换。
最终,代码返回一个包含三个调整后的张量的列表:[query, key, value]。每个张量都经过了线性变换、维度调整和转置操作。这是为了在后续的注意力机制计算中使用。
相关问题
class CAM_Module(Module): """ Channel attention module""" def __init__(self, in_dim): super(CAM_Module, self).__init__() self.chanel_in = in_dim self.gamma = Parameter(torch.zeros(1)) self.softmax = Softmax(dim=-1) def forward(self,x): """ inputs : x : input feature maps( B X C X H X W) returns : out : attention value + input feature attention: B X C X C """ m_batchsize, C, height, width, channle = x.size() #print(x.size()) proj_query = x.view(m_batchsize, C, -1) proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1) #形状转换并交换维度 energy = torch.bmm(proj_query, proj_key) energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy)-energy attention = self.softmax(energy_new) proj_value = x.view(m_batchsize, C, -1) out = torch.bmm(attention, proj_value) out = out.view(m_batchsize, C, height, width, channle) # print('out', out.shape) # print('x', x.shape) out = self.gamma*out + x #C*H*W return out 将其改成keras代码
下面是将该 Channel Attention Module 的 PyTorch 代码转换为 Keras 代码的实现:
```python
from keras.layers import Layer, Softmax
import tensorflow as tf
class CAM_Module(Layer):
""" Channel attention module"""
def __init__(self, in_dim):
super(CAM_Module, self).__init__()
self.chanel_in = in_dim
self.gamma = self.add_weight(name='gamma', shape=[1], initializer='zeros', trainable=True)
self.softmax = Softmax(axis=-1)
def call(self, x):
"""
inputs :
x : input feature maps( B X H X W X C)
returns :
out : attention value + input feature
attention: B X C X C
"""
m_batchsize, height, width, C = x.shape.as_list()
# print(x.shape)
proj_query = tf.reshape(x, [-1, height*width, C])
proj_key = tf.transpose(proj_query, perm=[0, 2, 1])
energy = tf.matmul(proj_query, proj_key)
energy_new = tf.expand_dims(tf.reduce_max(energy, axis=-1), axis=-1) - energy
attention = self.softmax(energy_new)
proj_value = tf.reshape(x, [-1, height*width, C])
out = tf.matmul(attention, proj_value)
out = tf.reshape(out, [-1, height, width, C])
out = self.gamma * out + x
return out
```
注意事项:
1. Keras 中的 Layer 类相当于 PyTorch 中的 Module 类;
2. Keras 中的 add_weight 方法可以添加模型参数,相当于 PyTorch 中的 Parameter 类;
3. Keras 中的 Softmax 层在调用时需要指定 `axis` 参数,相当于 PyTorch 中的 dim 参数;
4. Keras 中的 tf.reshape 方法可以替代 PyTorch 中的 view 方法;
5. Keras 中的 tf.transpose 方法可以替代 PyTorch 中的 permute 方法;
6. Keras 中的 tf.matmul 方法可以替代 PyTorch 中的 torch.bmm 方法。
class SelfAttention(nn.Module): def __init__(self, input_size=1, num_heads=1): super(SelfAttention, self).__init__() self.num_heads = 1 self.head_size = 1 self.query = nn.Linear(1, 1) self.key = nn.Linear(1, 1) self.value = nn.Linear(1, 1) self.out = nn.Linear(1, 1) def forward(self, inputs): batch_size, seq_len, input_size = inputs.size() # 128 706 1 # Split inputs into num_heads inputs = inputs.view(batch_size, seq_len, self.num_heads, self.head_size) inputs = inputs.permute(0, 2, 1, 3).contiguous() queries = self.query(inputs).view(batch_size, self.num_heads, seq_len, self.head_size) keys = self.key(inputs).view(batch_size, self.num_heads, seq_len, self.head_size) values = self.value(inputs).view(batch_size, self.num_heads, seq_len, self.head_size) # Compute attention scores scores = torch.matmul(queries, keys.permute(0, 1, 3, 2)) scores = scores / (self.head_size ** 0.5) attention = F.softmax(scores, dim=-1) # Apply attention weights to values attention_output = torch.matmul(attention, values) attention_output = attention_output.view(batch_size, seq_len, input_size) # Apply output linear layer output = self.out(attention_output) return output 解释一下代码 其中num_heads=1
这段代码定义了一个自注意力模块(Self-Attention),用于在神经网络中实现自注意力机制。自注意力机制在自然语言处理领域非常常见,它可以根据当前输入中的关键词来动态地调整权重,使得模型可以更好地捕捉句子中的重要信息。
该模块的输入是一个形状为 (batch_size, seq_len, input_size) 的张量,其中 batch_size 表示批次大小,seq_len 表示序列长度,input_size 表示每个位置的向量维度。模块会将输入张量分成 num_heads 份,每份的大小为 head_size = input_size / num_heads。这里 num_heads=1,因此每个位置向量的维度大小为1。
接着,模块会通过三个线性变换(query、key、value)将每个位置的向量映射到一个新的维度上,以便计算注意力权重。将 query、key、value 映射后的结果分别表示为 queries、keys、values 张量。
然后,模块会计算得到注意力权重,具体方法是通过 queries 和 keys 的点积得到一个分数矩阵,然后对分数矩阵进行 softmax 操作得到注意力权重。最后,将注意力权重乘以 values 张量,并将结果进行加权和得到 attention_output 张量。
最后,将 attention_output 张量通过一个线性变换 out,得到最终的输出张量 output。注意,这里的 num_heads=1 表示只有一份输入,因此在计算注意力权重时并没有进行多头注意力的操作。
阅读全文