def forward(self, x): B, N, C = x.shape if self.with_qkv: qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] else: qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) q, k, v = qkv, qkv, qkv ## get relative pos bias relative_pos_bias = self.relative_position_bias_table[self.relative_coords].view(self.num_ttokens, self.num_ttokens, -1).permute(2, 0, 1).contiguous() attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn + relative_pos_bias.unsqueeze(0) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) if self.with_qkv: x = self.proj(x) x = self.proj_drop(x) return x
时间: 2023-06-27 20:01:33 浏览: 564
这段代码是一个Transformer中多头注意力机制的前向传播过程。其中包含了以下步骤:
1. 根据输入x的形状(B, N, C),判断是否需要进行qkv投影。如果需要,则先将x通过一个qkv线性变换,分别得到query、key、value向量。
2. 获取相对位置偏置(relative_pos_bias),这个偏置是用于处理序列中不同位置之间的关系,这里使用了相对位置编码的方法。
3. 计算注意力得分,即将query和key向量进行点积操作,并除以一个缩放因子(scale)。得到的注意力得分再加上相对位置偏置。
4. 对得到的注意力得分进行softmax操作,得到注意力权重。
5. 对注意力权重进行dropout操作,以减少过拟合。
6. 将得到的注意力权重与value向量进行加权求和,得到输出向量。
7. 如果需要进行qkv投影,则将输出向量通过一个线性变换进行投影,得到最终输出。同时进行dropout操作,以减少过拟合。
8. 返回最终输出向量。
相关问题
import math import torch from torch import nn from d2l import torch as d2l def transpose_qkv(X,num_heads): X = X.reshape(X.shape[0], X.shape[1], num_heads, -1) X = X.permute(0, 2, 1, 3) return X.reshape(-1, X.shape[2], X.shape[3]) def transpose_output(X,num_heads): X = X.reshape(-1, num_heads, X.shape[1], X.shape[2]) X = X.permute(0, 2, 1, 3) return X.reshape(X.shape[0], X.shape[1], -1) class MultiHeadAttention(nn.Module): def __init__(self,key_size,query_size,value_size,num_hiddens, num_heads,dropout,bias=False,**kwargs): super(MultiHeadAttention,self).__init__(**kwargs) self.num_heads = num_heads self.attention = d2l.DotProductAttention(dropout) self.W_q = nn.Linear(query_size,num_hiddens,bias=bias) self.W_k = nn.Linear(key_size,num_hiddens,bias=bias) self.W_v = nn.Linear(value_size,num_hiddens,bias=bias) self.W_o = nn.Linear(num_hiddens,num_hiddens,bias=bias) def forward(self,queries,keys,values,valid_lens): queries = transpose_qkv(self.W_q(queries), self.num_heads) keys = transpose_qkv(self.W_k(keys), self.num_heads) values = transpose_qkv(self.W_v(values), self.num_heads) if valid_lens is not None: valid_lens = torch.repeat_interleave(valid_lens, repeats=self.num_heads, dim=0) output = self.attention(queries,keys,values,valid_lens) output_concat = transpose_output(output,self.num_heads) return self.W_o(output_concat)
这段代码实现了多头注意力机制(Multi-Head Attention)的模块。多头注意力机制是用于处理序列数据的深度学习模型中常的组件,它可以并行地对输入序列进行不同位置的关注。
在这段代码中,`MultiHeadAttention` 类继承自 `nn.Module`,并实现了 `forward` 方法来定义前向传播的计算过程。在初始化方法 `__init__` 中,定义了多头注意力机制所需的参数,包括输入和输出的维度、头数、隐藏层大小等。同时,还定义了线性变换层 `W_q`、`W_k`、`W_v` 和 `W_o`,用于将输入序列映射到查询、键、值和输出空间。
在 `forward` 方法中,首先对查询、键和值进行线性变换,并通过 `transpose_qkv` 函数将它们转置为多头注意力机制所需的形状。然后,调用 `DotProductAttention` 类来计算注意力权重,并将注意力加权的值进行转置和重塑操作,最后通过线性变换层 `W_o` 得到最终的输出。
需要注意的是,在计算过程中,如果提供了有效长度 `valid_lens`,则将其在维度0上进行复制以适应多头注意力机制的并行计算。
这段代码使用了 PyTorch 框架和 d2l 库来实现多头注意力机制。具体实现细节可以参考 d2l 库中的相关章节或文档。
import torchimport torch.nn as nnclass MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.Wq = nn.Linear(d_model, d_model) self.Wk = nn.Linear(d_model, d_model) self.Wv = nn.Linear(d_model, d_model) self.fc = nn.Linear(d_model, d_model) def scaled_dot_product_attention(self, Q, K, V, mask=None): d_k = Q.size(-1) scores = torch.matmul(Q, K.transpose(-1, -2)) / torch.sqrt(torch.tensor(d_k, dtype=torch.float32)) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) attention = torch.softmax(scores, dim=-1) output = torch.matmul(attention, V) return output, attention def split_heads(self, x, batch_size): x = x.view(batch_size, -1, self.num_heads, self.depth) return x.permute(0, 2, 1, 3) def forward(self, Q, K, V, mask=None): batch_size = Q.size(0) Q = self.Wq(Q) K = self.Wk(K) V = self.Wv(V) Q = self.split_heads(Q, batch_size) K = self.split_heads(K, batch_size) V = self.split_heads(V, batch_size) scaled_attention, attention = self.scaled_dot_product_attention(Q, K, V, mask) scaled_attention = scaled_attention.permute(0, 2, 1, 3).contiguous() scaled_attention = scaled_attention.view(batch_size, -1, self.d_model) output = self.fc(scaled_attention) return output, attention
上述代码是一个用PyTorch实现的多头注意力机制(Multi-Head Attention)的模块,该模块可以被用来构建神经网络模型。它的参数有:
- d_model:表示输入向量的维度,也就是embedding的维度。
- num_heads:表示attention头的数量。
输入的维度是:
- Q, K, V:三个输入张量的维度都为 [batch_size, seq_length, d_model],其中batch_size代表batch的大小,seq_length代表输入序列的长度,d_model代表输入向量的维度。
- mask:一个shape为[batch_size, 1, seq_length, seq_length]的张量,用于掩盖无效的位置,使得在计算注意力矩阵时,注意力矩阵中无效位置对应的权重为0。如果没有无效位置,则可以设置为None。
阅读全文