详细解释一下这段图像代码 def forward(self, x): b, c, *_spatial = x.shape x = x.reshape(b, c, -1) x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) x = x + self.positional_embedding[None, :, :].to(x.dtype) x = self.qkv_proj(x) x = self.attention(x) x = self.c_proj(x) return x
时间: 2023-04-01 07:04:27 浏览: 84
这段代码是一个 PyTorch 模型的前向传播函数,它接受一个张量 x 作为输入,并返回一个张量 x。这个函数的作用是对输入张量进行一系列操作,包括将其 reshape 成为一个二维张量,计算其平均值并将其与原始张量拼接起来,然后进行一些线性变换和注意力机制的计算,最后输出一个张量 x。这个函数的具体实现细节需要根据模型的具体结构来理解。
相关问题
def forward(self, x): b, c, *_spatial = x.shape x = x.reshape(b, c, -1) x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) x = x + self.positional_embedding[None, :, :].to(x.dtype) x = self.qkv_proj(x) x = self.attention(x) x = self.c_proj(x) return x后返回的x有什么作用
这个函数的作用是将输入的张量进行一系列的操作后返回一个新的张量x,其中x经过了位置编码、注意力机制和线性变换等处理,最终用于模型的下一步计算。具体来说,x的作用是传递给下一层网络进行进一步的计算和处理。
class FuturePrediction(torch.nn.Module): def __init__(self, in_channels, latent_dim, n_gru_blocks=3, n_res_layers=3): super().__init__() self.n_gru_blocks = n_gru_blocks # Convolutional recurrent model with z_t as an initial hidden state and inputs the sample # from the probabilistic model. The architecture of the model is: # [Spatial GRU - [Bottleneck] x n_res_layers] x n_gru_blocks self.spatial_grus = [] self.res_blocks = [] for i in range(self.n_gru_blocks): gru_in_channels = latent_dim if i == 0 else in_channels self.spatial_grus.append(SpatialGRU(gru_in_channels, in_channels)) self.res_blocks.append(torch.nn.Sequential(*[Bottleneck(in_channels) for _ in range(n_res_layers)])) self.spatial_grus = torch.nn.ModuleList(self.spatial_grus) self.res_blocks = torch.nn.ModuleList(self.res_blocks) def forward(self, x, hidden_state): # x has shape (b, n_future, c, h, w), hidden_state (b, c, h, w) for i in range(self.n_gru_blocks): x = self.spatial_grus[i](x, hidden_state, flow=None) b, n_future, c, h, w = x.shape x = self.res_blocks[i](x.view(b * n_future, c, h, w)) x = x.view(b, n_future, c, h, w) return x是什么意思?
这是一个基于卷积循环神经网络的模型,用于进行未来预测。该模型包括若干个 SpatialGRU 模块和若干个 Bottleneck 模块,可以接受输入 x 和初始隐藏状态 hidden_state,输出预测结果 x。其中,x 的形状为 (b, n_future, c, h, w),表示批次大小为 b,未来预测数为 n_future,通道数为 c,高度为 h,宽度为 w;hidden_state 的形状为 (b, c, h, w),表示批次大小为 b,通道数为 c,高度为 h,宽度为 w。在 forward 方法中,会循环执行若干次 SpatialGRU 和 Bottleneck 模块,最终输出预测结果 x。
阅读全文