matlab累积正态分布
时间: 2023-08-03 15:44:21 浏览: 183
在 MATLAB 中,可以使用 `normcdf` 函数来计算累积正态分布。具体使用方法如下:
```matlab
% 计算标准正态分布在 x 处的累积分布值
x = 1.5;
p = normcdf(x);
% 计算均值为 mu,标准差为 sigma 的正态分布在 x 处的累积分布值
mu = 0;
sigma = 1;
x = 1.5;
p = normcdf(x, mu, sigma);
```
其中,第一个参数为自变量 x,第二个参数为正态分布的均值 mu(默认为 0),第三个参数为正态分布的标准差 sigma(默认为 1)。函数返回的是累积分布函数的值,即在负无穷到 x 区间内的概率值。
相关问题
已知x,y。用matlab拟合累积正态分布曲线
可以使用MATLAB中的`fitdist()`函数来拟合累积正态分布曲线,具体步骤如下:
1. 准备数据,将x和y组成一个矩阵。
2. 使用`fitdist()`函数,选择累积正态分布模型,设置参数为`'Lognormal'`。其中,x和y分别作为累积正态分布的均值和标准差的初始值,可以通过`mean()`和`std()`函数获取。
3. 将拟合结果绘制成曲线,使用`cdf()`函数来计算累积分布函数值,并使用`plot()`函数绘制出曲线。
下面是一个简单的示例代码:
```matlab
% 准备数据
x = [1, 2, 3, 4, 5];
y = [0.1, 0.3, 0.4, 0.15, 0.05];
data = [x', y'];
% 拟合累积正态分布曲线
mu = mean(log(x)); % 累积正态分布的均值
sigma = std(log(x)); % 累积正态分布的标准差
pd = fitdist(log(data), 'Lognormal', 'Start', [mu, sigma]);
% 绘制累积分布函数曲线
x_vals = linspace(min(x), max(x), 100);
y_vals = cdf(pd, log(x_vals));
plot(x_vals, y_vals);
```
运行上述代码,就可以得到一条拟合好的累积正态分布曲线。
matlab对数正态分布
Matlab是一种强大的数值计算和科学编程软件,它提供了丰富的函数和工具箱来处理各种数学和统计问题,包括对数正态分布。
对数正态分布是一种连续概率分布,其随机变量的对数服从正态分布。在Matlab中,可以使用lognstat函数来计算对数正态分布的统计特性,例如均值、方差等。lognpdf函数可以用于计算对数正态分布的概率密度函数值,而logncdf函数可以用于计算对数正态分布的累积分布函数值。
以下是Matlab中对数正态分布的一些常用函数和用法示例:
1. lognstat(mu, sigma):计算对数正态分布的均值和方差,其中mu为对数正态分布的均值参数,sigma为对数正态分布的标准差参数。
示例:
mu = 1; % 均值参数
sigma = 0.5; % 标准差参数
[mu_hat, sigma_hat] = lognstat(mu, sigma); % 计算对数正态分布的均值和方差
disp(['均值:', num2str(mu_hat)]);
disp(['方差:', num2str(sigma_hat)]);
2. lognpdf(x, mu, sigma):计算对数正态分布在给定点x处的概率密度函数值。
示例:
x = 2; % 给定点
pdf_value = lognpdf(x, mu, sigma); % 计算对数正态分布在x处的概率密度函数值
disp(['概率密度函数值:', num2str(pdf_value)]);
3. logncdf(x, mu, sigma):计算对数正态分布在给定点x处的累积分布函数值。
示例:
x = 2; % 给定点
cdf_value = logncdf(x, mu, sigma); % 计算对数正态分布在x处的累积分布函数值
disp(['累积分布函数值:', num2str(cdf_value)]);
阅读全文