用python实现:两个excel表中分别存有两类地址的经纬度,调用高德API分别查出两类地址相互之间的距离
时间: 2024-09-21 17:08:31 浏览: 39
python计算两个地址之间的距离方法
在Python中,你可以使用pandas库处理Excel数据,`geopy`库来计算地理坐标间的距离,以及`requests`库来发送HTTP请求调用高德地图API。以下是一个简单的步骤说明:
1. 首先,安装必要的库:
```bash
pip install pandas geopy requests
```
2. 导入所需的库:
```python
import pandas as pd
from geopy.distance import geodesic
import requests
from json import loads
```
3. 加载Excel文件:
```python
df_address1 = pd.read_excel('address_file1.xlsx')
df_address2 = pd.read_excel('address_file2.xlsx')
```
4. 确保地址列是字符串格式,并提取经纬度信息:
```python
df_address1['lat'] = df_address1['Address'].apply(lambda x: get_latitude(x)) # 自定义函数获取经纬度
df_address1['lng'] = df_address1['Address'].apply(lambda x: get_longitude(x))
df_address2['lat'] = df_address2['Address'].apply(lambda x: get_latitude(x))
df_address2['lng'] = df_address2['Address'].apply(lambda x: get_longitude(x))
def get_latitude(address):
# 实现从地址获取经纬度的功能,可能需要高德API或其他服务
pass
def get_longitude(address):
# 类似地,这里也获取经度
pass
```
5. 计算并保存距离:
```python
df_distance = pd.DataFrame()
for index, row1 in df_address1.iterrows():
for index2, row2 in df_address2.iterrows():
distance = geodesic((row1.lat, row1.lng), (row2.lat, row2.lng)).miles # 或者kilometers
df_distance = df_distance.append({'Address1': row1['Address'], 'Address2': row2['Address'], 'Distance': distance}, ignore_index=True)
```
6. 调用高德地图API获取更精确的距离(如果直接计算经纬度不够准确):
```python
def get_distance_by_amap(address1, address2):
key = "your_amap_api_key" # 替换为你实际的高德地图API密钥
url = f"https://restapi.amap.com/v3/geocode/regeo?key={key}&location={address1}%2C{address2}"
response = requests.get(url).json()
if 'regeocode' in response and 'result' in response['regeocode']:
location1 = (response['regeocode']['result']['location']['lat'], response['regeocode']['result']['location']['lng'])
location2 = (row2['lat'], row2['lng'])
precise_distance = geodesic(location1, location2).miles
return precise_distance
else:
print(f"Failed to get accurate distance for {address1} and {address2}")
return None
df_distance['Precise_Distance'] = df_distance.apply(lambda x: get_distance_by_amap(x['Address1'], x['Address2']), axis=1)
```
7. 可能的情况与注意事项:
- 如果使用高德地图API频繁可能会超出免费额度,考虑购买相应服务或者优化访问频率。
阅读全文