BIT_ADDR(GPIOC_ODR_Addr,n)

时间: 2023-09-08 11:12:40 浏览: 168
`BIT_ADDR(GPIOC_ODR_Addr, n)` 是一个宏定义,用于获取一个指定位置的位地址。它接受两个参数,`GPIOC_ODR_Addr` 和 `n`。 - `GPIOC_ODR_Addr` 是一个表示 GPIOC 寄存器 ODR(输出数据寄存器)地址的变量或常量。 - `n` 是要获取的位在寄存器中的位置,范围是从 0 到 15。 这个宏的作用是通过对寄存器地址和位位置进行位运算,得到对应位的地址。这通常用于对特定的位进行读取或写入操作,例如设置某个引脚的状态。
相关问题

解释这行代码 #ifndef BITBAND #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) #endif #ifndef MEM_ADDR #define MEM_ADDR(addr) *((volatile unsigned long *)(addr)) #endif #ifndef BIT_ADDR #define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum)) #endif #ifndef GPIOA_ODR_Addr #define GPIOA_ODR_Addr (GPIOA_BASE+12) //0x4001080C #endif #ifndef GPIOA_IDR_Addr #define GPIOA_IDR_Addr (GPIOA_BASE+8) //0x40010808 #endif #define GET_PORT_GPIO(n) (GPIO_TypeDef *)(GPIOA_BASE+0x0400UL*((n)>>4)) #define GET_PIN_GPIO(n) (GPIO_Pin_0<<((n)&0x0f)) //IO快速操作(STM32F103在72M时约82ns),使用灵活度较低 #define ReadPin(m,n) P##m##in(n) #define WritePin(m,n) P##m##out(n) #define SetPin(m,n) WritePin(m,n)=1 #define ResetPin(m,n) WritePin(m,n)=0 #define TogglePin(m,n) WritePin(m,n)=!WritePin(m,n) //IO操作速度较慢(STM32F103在72M时约0.85us,表达是中有数据运算),使用比较灵活 #define PinRead(n) BIT_ADDR(GPIOA_IDR_Addr+0x400*((n)>>4),((n)&0x0f)) #define PinOut(n) BIT_ADDR(GPIOA_ODR_Addr+0x400*((n)>>4),((n)&0x0f)) #define PinWrite PinOut #define PinSet(n) PinOut(n)=1 #define PinReset(n) PinOut(n)=0 #define PinToggle(n) PinOut(n)=!Pin_Out(n) void GPIO_Pin_Init(MyPinDef pin,GPIOMode_TypeDef Mode); void GPIO_WriteHigh(GPIO_TypeDef* GPIOx,u8 dat); void GPIO_WriteLow(GPIO_TypeDef* GPIOx,u8 dat); u16 My_GPIO_GetVersion(void); #endif

这是一个头文件,其中定义了一些GPIO操作的宏和函数。 #ifndef是一个条件编译指令,如果BITBAND、MEM_ADDR、BIT_ADDR、GPIOA_ODR_Addr、GPIOA_IDR_Addr没有被定义过,那么就执行下面的代码,否则忽略这段代码。 BITBAND是一个宏,用于将一个位带地址(addr)和位(bitnum)转换为一个字(4个字节)的地址。 MEM_ADDR是一个宏,用于将一个地址转换为一个unsigned long类型的指针。 BIT_ADDR是一个宏,用于将一个GPIO口的输入输出寄存器地址(addr)和位(bitnum)转换为一个unsigned long类型的指针,以便于直接读写单个GPIO口的输入输出状态。 GPIOA_ODR_Addr和GPIOA_IDR_Addr分别是GPIOA口的输出寄存器和输入寄存器的地址。 GET_PORT_GPIO和GET_PIN_GPIO是两个宏,用于根据GPIO口的编号(n)获取GPIO端口和GPIO引脚。 ReadPin、WritePin、SetPin、ResetPin和TogglePin是五个宏,用于读写GPIO口的输入输出状态。 PinRead、PinOut、PinWrite、PinSet、PinReset和PinToggle是六个宏,也是用于读写GPIO口的输入输出状态。 GPIO_Pin_Init是一个函数,用于初始化GPIO口的指定引脚的模式。 GPIO_WriteHigh和GPIO_WriteLow是两个函数,用于将指定的GPIO口的指定引脚的输出电平设置为高电平或低电平。 My_GPIO_GetVersion是一个函数,用于获取GPIO库的版本号。

#include "mygpio.h" uint32_t GetGPIO_RCC(MyPinDef pin){ return RCC_APB2Periph_GPIOA<<(pin/16); } GPIO_TypeDef* GetGPIO_Port(MyPinDef pin){ return ((GPIO_TypeDef *) (GPIOA_BASE+0x0400*(pin/16))); } uint16_t GetGPIO_PIN(MyPinDef pin){ return 0x0001<<(pin%16); } void GPIO_SetMode(MyPinDef pin,GPIOMode_TypeDef mode){ GPIO_InitTypeDef GPIO_InitStructure; //声明结构体 RCC_APB2PeriphClockCmd(GetGPIO_RCC(pin), ENABLE); //**All notes can be deleted and modified**// GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GetGPIO_Port(pin), &GPIO_InitStructure); } void Pin_Out(MyPinDef pin, uint8_t bit){ if(pin<80) BIT_ADDR(GPIOA_ODR_Addr+0x400*(pin/16),pin%16) = bit; else BIT_ADDR(GPIOF_ODR_Addr+0x400*((pin-80)/16),pin%16) = bit; } uint8_t Pin_Read(MyPinDef pin){ if(pin<80) return BIT_ADDR(GPIOA_IDR_Addr+0x400*(pin/16),pin%16); else return BIT_ADDR(GPIOF_IDR_Addr+0x400*((pin-80)/16),pin%16); } void SetPin(MyPinDef pin){ Pin_Out(pin, 1); } void ResetPin(MyPinDef pin){ Pin_Out(pin, 0); }

这段代码是用来控制 STM32 的 GPIO 端口的,主要包含了以下几个函数: 1. `GetGPIO_RCC`:根据引脚号返回该引脚所在的 GPIO 端口的时钟 RCC_APB2Periph_GPIOx,其中 x 表示端口号,如 A、B、C 等。 2. `GetGPIO_Port`:根据引脚号返回该引脚所在的 GPIO 端口,其中 GPIOA_BASE 表示 A 端口的基地址,0x0400 表示一个端口的地址偏移量,因此 `(GPIOA_BASE+0x0400*(pin/16))` 就是引脚所在的端口的地址。 3. `GetGPIO_PIN`:根据引脚号返回该引脚的编号,例如引脚号为 2,返回值就是 0x0004。 4. `GPIO_SetMode`:配置 GPIO 端口的工作模式,包括输入、输出、复用功能等。 5. `Pin_Out`:将引脚设置为输出模式,并输出指定的数值(0 或 1)。 6. `Pin_Read`:读取引脚的输入值。 7. `SetPin`:将引脚设置为高电平状态。 8. `ResetPin`:将引脚设置为低电平状态。 需要注意的是,代码中的 `BIT_ADDR` 是一个宏定义,用于读写位地址,其定义如下: ``` #define ADDR_FLASH_PAGE_31 ((uint32_t)0x08007C00) /* Base @ of Page 31, 2 Kbytes */ #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x02000000+((addr & 0xFFFFF)<<5)+(bitnum<<2)) #define MEM_ADDR(addr) *((volatile unsigned long *)(addr)) #define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum)) #define GPIOA_ODR_Addr (GPIOA_BASE+0x14) #define GPIOB_ODR_Addr (GPIOB_BASE+0x14) #define GPIOC_ODR_Addr (GPIOC_BASE+0x14) #define GPIOD_ODR_Addr (GPIOD_BASE+0x14) #define GPIOE_ODR_Addr (GPIOE_BASE+0x14) #define GPIOF_ODR_Addr (GPIOF_BASE+0x14) #define GPIOG_ODR_Addr (GPIOG_BASE+0x14) #define GPIOA_IDR_Addr (GPIOA_BASE+0x10) #define GPIOB_IDR_Addr (GPIOB_BASE+0x10) #define GPIOC_IDR_Addr (GPIOC_BASE+0x10) #define GPIOD_IDR_Addr (GPIOD_BASE+0x10) #define GPIOE_IDR_Addr (GPIOE_BASE+0x10) #define GPIOF_IDR_Addr (GPIOF_BASE+0x10) #define GPIOG_IDR_Addr (GPIOG_BASE+0x10) ``` 这里使用了位带操作,将每个位单独映射到一个地址上,以实现对单个位的读写操作。

相关推荐

最新推荐

recommend-type

node-v0.8.10-sunos-x64.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

【课程设计】实现的金融风控贷款违约预测python源码.zip

【课程设计】实现的金融风控贷款违约预测python源码.zip
recommend-type

node-v0.10.27-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

课设毕设基于SSM的高校二手交易平台-LW+PPT+源码可运行.zip

课设毕设基于SSM的高校二手交易平台--LW+PPT+源码可运行
recommend-type

c++,冒险游戏,可供学习

冒险游戏,可供学习
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。