bp神经网络matlab手写数字识别

时间: 2023-11-24 14:03:09 浏览: 34
BP神经网络是一种常见的人工神经网络模型,可用于数字识别。在Matlab中,我们可以通过编写代码来实现BP神经网络来识别手写数字。 首先,我们需要准备一个手写数字数据集,例如MNIST数据集,该数据集包含大量的手写数字图片和对应的标签。然后,我们可以使用Matlab的神经网络工具箱来创建一个BP神经网络模型,设置输入层、隐藏层和输出层的神经元数量,并定义网络的训练算法和参数。 接下来,我们可以将手写数字图片和对应的标签输入到BP神经网络模型中进行训练。训练过程中,网络将根据输入图片的特征和标签的对应关系,不断调整神经元之间的连接权重,以提高网络对手写数字的识别准确率。 在网络训练完成后,我们可以使用测试集来评估网络的性能,并对未知的手写数字进行识别预测。通过调整神经网络的结构和参数,我们可以不断优化网络模型,提高手写数字识别的准确率。 总之,在Matlab中使用BP神经网络实现手写数字识别,需要准备数据集、创建网络模型、训练网络、评估性能、优化参数等步骤。通过这些步骤,我们可以实现一个高效准确的手写数字识别系统。
相关问题

BP神经网络实现手写数字识别matlab

BP神经网络可以用于手写数字识别,以下是实现手写数字识别的MATLAB代码: ```matlab % 加载数据 load('mnist.mat'); % 将数据分为训练集和测试集 train_x = double(train_x')/255; test_x = double(test_x')/255; train_y = double(train_y'); test_y = double(test_y'); % 创建BP神经网络 net = patternnet(100); % 训练BP神经网络 net = train(net, train_x, train_y); % 测试BP神经网络 test_yy = net(test_x); % 计算准确率 test_ys = vec2ind(test_y); test_yys = vec2ind(test_yy); accuracy = sum(test_ys == test_yys)/length(test_ys); disp(['Accuracy: ', num2str(accuracy)]); ``` 以上代码中,首先加载了手写数字数据集mnist.mat,然后将数据分为训练集和测试集。接着创建了一个有100个神经元的BP神经网络,并使用训练集对其进行训练。最后使用测试集对训练好的BP神经网络进行测试,并计算准确率。

基于bp神经网络的手写数字识别 matlab

基于BP神经网络的手写数字识别在MATLAB中的实现,可以通过以下几个步骤来完成。 第一步,准备数据集。我们需要一个包含手写数字样本的数据集,每个样本都是一个图片,包含了对应的手写数字。可以使用公开的手写数字数据集,如MNIST数据集,或者自己制作一个数据集。 第二步,数据预处理。对于手写数字识别任务,常常需要进行一些预处理操作,如图片的二值化、尺寸调整等。这可以通过MATLAB的图像处理工具箱来实现。 第三步,构建BP神经网络模型。在MATLAB中,可以使用Neural Network Toolbox来构建和训练神经网络模型。可以选择合适的网络结构和超参数来搭建一个适用于手写数字识别的BP神经网络模型。 第四步,训练神经网络模型。使用准备好的数据集,将数据输入神经网络,通过反向传播算法来训练网络。在训练过程中,可以使用交叉验证等方法来评估模型的性能,并调整网络结构及超参数的选择。 第五步,测试和评估。使用另外一组手写数字样本作为测试集,将测试数据输入已训练好的神经网络模型,得到识别结果。可以计算识别准确率、混淆矩阵等指标来评估模型的性能。 最后,通过以上步骤,我们可以在MATLAB中基于BP神经网络实现手写数字识别任务。在实际应用中,还可以进一步优化模型,如引入卷积神经网络、数据增强等方法,以提高识别性能。同时,也可以设计一个用户界面,使得用户可以输入手写数字并得到识别结果。

相关推荐

实现手写数字识别的BP神经网络流程如下: 1. 准备数据集:使用MNIST数据集,其中包含60,000个训练样本和10,000个测试样本,每个样本都是一个28x28像素的灰度图像。 2. 数据预处理:将图像数据转换为向量形式,即将28x28的图像转换为一个784维的向量,并将像素值从0~255归一化到0~1之间。 3. 确定网络结构:对于手写数字识别,输入层有784个神经元,输出层有10个神经元(分别对应0~9十个数字),中间隐含层的神经元数量可以根据实际情况确定,一般选择一个合适的数量,比如100个。 4. 初始化权重和偏置:随机初始化权重和偏置,通常使用正态分布或均匀分布进行初始化。 5. 前向传播:将输入数据送入神经网络,通过多次计算得到输出结果。 6. 计算误差:将输出结果与实际标签进行比较,得到误差值。 7. 反向传播:根据误差值,通过链式法则计算每个神经元的误差贡献,并将误差值反向传播到前一层神经元,最终得到每个权重和偏置的梯度。 8. 更新权重和偏置:使用梯度下降法,按照一定的学习率更新每个权重和偏置的值,使得误差逐渐减小。 9. 重复以上步骤,直到达到一定的精度或者训练次数。 在MATLAB中,可以使用nprtool工具箱来实现BP神经网络的建模和训练。具体步骤如下: 1. 打开MATLAB,输入nprtool命令,打开神经网络工具箱。 2. 点击“New”按钮,选择“New->New Neural Network”创建一个新的神经网络模型。 3. 在“Create New Network”对话框中,选择BP神经网络,并设置输入层、隐含层和输出层的神经元数量。 4. 点击“Create”按钮,生成一个新的神经网络模型。 5. 点击“Import Data”按钮,导入MNIST数据集,设置训练集和测试集的大小。 6. 点击“Train”按钮,选择训练参数,如学习率、训练次数等,并开始训练。 7. 训练完成后,可以使用测试集来评估模型的准确率。 8. 可以通过修改神经网络模型的结构和训练参数来进一步提高模型的准确率。 以上就是使用MATLAB实现BP神经网络手写数字识别的基本流程。
bp神经网络是一种常用的人工神经网络模型,可以用于手写数字识别。Matlab是一个强大的科学计算软件,也提供了丰富的神经网络工具包。 首先,需要创建一个BP神经网络模型。可以使用Matlab中的"newff"函数来创建一个具有指定输入、输出和隐藏层节点数量的BP网络。网络的输入层节点数量应与手写数字的特征数量相匹配,输出层节点数量应为10,对应于0-9这10个可能的数字。 然后,可以使用手写数字的训练数据来训练BP神经网络。这些训练数据应该包含已知的手写数字图像及其对应的数字标签。可以使用Matlab中的"train"函数来对网络进行训练,指定训练数据和训练参数。网络会通过不断调整权重和偏置来逼近正确的输出。 训练完成后,可以使用训练好的神经网络来识别手写数字。对于待识别的手写数字图像,可以使用Matlab的"sim"函数将其输入到网络中,得到网络的输出结果。输出结果为一个包含10个值的向量,表示输入图像是每个数字的概率。可以通过比较这些概率,并选取最大的值对应的数字作为识别结果。 需要注意的是,BP神经网络对于手写数字识别是一种简单但有效的方法。然而,准确率可能会受到训练数据的质量和数量的影响。同时,还可以使用其他改进的神经网络模型或者结合其他图像处理技术来提高手写数字识别的准确性。
手写数字识别是机器学习中的一个重要应用,它可以用于数字化文字、自动化识别、人机交互等领域。在本文中,我们将介绍如何使用Matlab实现基于BP神经网络的手写数字识别。 1. 数据预处理 手写数字识别需要大量的训练数据,我们可以使用MNIST数据集进行训练。MNIST数据集由60000个训练样本和10000个测试样本组成,每个样本为28x28的灰度图像,表示一个手写数字0-9。 在Matlab中,我们可以使用load函数加载MNIST数据集。代码如下: load('mnist_all.mat'); 其中,mnist_all.mat是MNIST数据集的Matlab格式文件,包含了10个文件,每个文件对应一个数字。我们可以使用for循环遍历这些文件,读取图像数据,并将其转换为神经网络训练所需的格式。代码如下: % 初始化数据 X_train = []; Y_train = []; X_test = []; Y_test = []; % 遍历MNIST数据集 for i = 0:9 % 读取训练数据 filename = ['train' num2str(i) '.mat']; data = load(filename); X_train = [X_train; data.train_images]; Y_train = [Y_train; repmat(i, size(data.train_images, 1), 1)]; % 读取测试数据 filename = ['test' num2str(i) '.mat']; data = load(filename); X_test = [X_test; data.test_images]; Y_test = [Y_test; repmat(i, size(data.test_images, 1), 1)]; end % 将图像数据转换为神经网络训练所需的格式 X_train = double(X_train') / 255; Y_train = ind2vec(Y_train' + 1); X_test = double(X_test') / 255; Y_test = ind2vec(Y_test' + 1); 在上面的代码中,我们使用ind2vec函数将标签数据转换为one-hot编码,以便于神经网络的输出和计算误差。同时,我们将图像数据进行归一化处理,将像素值的范围从[0, 255]缩放到[0, 1],以便于神经网络的训练。 2. 神经网络模型设计 在本文中,我们使用BP神经网络进行手写数字识别。BP神经网络是一种前向反馈神经网络,它可以通过反向传播算法来训练网络权重,从而实现对输入数据的分类。 在Matlab中,我们可以使用feedforwardnet函数创建BP神经网络。代码如下: % 创建BP神经网络 net = feedforwardnet([100, 50]); 其中,feedforwardnet函数的第一个参数为一个数组,表示神经网络的隐层结构。在上面的代码中,我们创建了一个包含100个神经元的第一层隐层和50个神经元的第二层隐层的BP神经网络。 3. 神经网络训练 创建完神经网络后,我们需要对其进行训练。在Matlab中,我们可以使用train函数对神经网络进行训练。代码如下: % 配置训练参数 net.divideParam.trainRatio = 0.8; net.divideParam.valRatio = 0.2; net.divideParam.testRatio = 0; net.trainParam.epochs = 100; net.trainParam.lr = 0.01; % 训练神经网络 [net, tr] = train(net, X_train, Y_train); 在上面的代码中,我们首先对训练参数进行了配置,包括训练集、验证集、测试集的比例、训练轮数以及学习率等。然后,我们使用train函数对神经网络进行训练,并返回训练后的神经网络和训练信息。 4. 神经网络测试 训练完神经网络后,我们需要对其进行测试。在Matlab中,我们可以使用sim函数对神经网络进行测试。代码如下: % 测试神经网络 Y_pred = sim(net, X_test); 在上面的代码中,我们使用sim函数对测试集数据进行预测,并返回预测结果。 5. 结果分析 最后,我们需要对预测结果进行分析。在Matlab中,我们可以使用plotconfusion函数绘制混淆矩阵,以评估神经网络的分类性能。代码如下: % 绘制混淆矩阵 plotconfusion(Y_test, Y_pred); 在上面的代码中,我们使用plotconfusion函数绘制混淆矩阵,并将真实标签数据和预测结果作为输入参数。 除了混淆矩阵,我们还可以使用其他指标来评估神经网络的性能,比如准确率、精确率、召回率等。在Matlab中,我们可以使用confusionmat和perfcurve函数分别计算混淆矩阵和ROC曲线等指标。代码如下: % 计算混淆矩阵 C = confusionmat(vec2ind(Y_test), vec2ind(Y_pred)); % 计算ROC曲线 [X, Y, T, AUC] = perfcurve(vec2ind(Y_test), vec2ind(Y_pred), 10); 在上面的代码中,我们使用confusionmat函数计算混淆矩阵,并使用perfcurve函数计算ROC曲线及其AUC值。 综上所述,我们可以使用Matlab实现基于BP神经网络的手写数字识别,并通过混淆矩阵、ROC曲线等指标来评估神经网络的性能。
BP神经网络是一种常见的人工神经网络,可以用于手写数字识别。下面简单介绍一下如何在Matlab中使用BP神经网络进行手写数字识别。 1. 准备数据集:首先需要准备一个手写数字的数据集,包括训练集和测试集。每个样本应该是一张28x28的灰度图像,表示一个手写数字。可以使用MNIST等公共数据集,也可以自己制作数据集。 2. 数据预处理:将每个样本转换成一个784维的向量,每个维度代表图像中一个像素点的灰度值。同时将标签转换成一个10维的向量,用于表示数字的类别。例如,数字5对应的标签向量为[0 0 0 0 0 1 0 0 0 0]。 3. 构建神经网络模型:在Matlab中可以使用Neural Network Toolbox来构建BP神经网络模型。模型的输入层有784个节点,输出层有10个节点,中间可添加若干个隐含层,每个隐含层可以有任意数量的节点。神经网络模型的具体设计可以根据实际情况进行调整。 4. 训练神经网络:使用训练集对神经网络进行训练。可以选择不同的训练算法,例如梯度下降法、共轭梯度法等。训练过程中需要设定一些参数,例如学习率、动量因子、正则化系数等。 5. 测试神经网络:使用测试集对训练好的神经网络进行测试。计算分类准确率等评价指标,可以对模型进行调整和改进。 以上是使用BP神经网络进行手写数字识别的大致流程,具体实现细节可以参考Matlab官方文档和Neural Network Toolbox的使用手册。
以下是一个基于BP神经网络实现手写数字识别的MATLAB程序示例: 首先,载入手写数字图片数据集(MNIST),可以通过以下代码实现: matlab load('mnist.mat'); % 载入MNIST数据集 train_images = double(train_images)/255; % 归一化训练集 test_images = double(test_images)/255; % 归一化测试集 num_train = size(train_labels,1); % 训练集大小 num_test = size(test_labels,1); % 测试集大小 接着,定义BP神经网络的参数,包括输入层、隐藏层和输出层的节点数、学习率、迭代次数等等: matlab input_layer_size = 784; % 输入层节点数 hidden_layer_size = 25; % 隐藏层节点数 output_layer_size = 10; % 输出层节点数 learning_rate = 0.1; % 学习率 num_iter = 1000; % 迭代次数 然后,初始化BP神经网络的权重和偏置参数: matlab % 初始化权重和偏置参数 W1 = randn(hidden_layer_size,input_layer_size); % 输入层到隐藏层权重 b1 = randn(hidden_layer_size,1); % 隐藏层偏置 W2 = randn(output_layer_size,hidden_layer_size); % 隐藏层到输出层权重 b2 = randn(output_layer_size,1); % 输出层偏置 接下来,开始训练BP神经网络: matlab for iter = 1:num_iter % 迭代训练 % 随机选择一个样本 i = randi(num_train); x = train_images(i,:)'; y = zeros(output_layer_size,1); y(train_labels(i)+1) = 1; % 将标签转化为one-hot编码 % 前向传播计算输出 z1 = W1*x + b1; a1 = sigmoid(z1); z2 = W2*a1 + b2; a2 = softmax(z2); % 计算误差 loss = -sum(y.*log(a2)); % 反向传播更新参数 delta2 = a2 - y; delta1 = (W2'*delta2).*sigmoid_grad(z1); W2 = W2 - learning_rate*delta2*a1'; b2 = b2 - learning_rate*delta2; W1 = W1 - learning_rate*delta1*x'; b1 = b1 - learning_rate*delta1; end 最后,进行测试并计算分类准确率: matlab % 测试BP神经网络 num_correct = 0; for i = 1:num_test x = test_images(i,:)'; y = test_labels(i); z1 = W1*x + b1; a1 = sigmoid(z1); z2 = W2*a1 + b2; a2 = softmax(z2); [~,pred] = max(a2); if pred-1 == y % 将one-hot编码转化为标签 num_correct = num_correct + 1; end end accuracy = num_correct/num_test; fprintf('分类准确率为 %.2f%%\n',accuracy*100); 完整的BP神经网络实现手写数字识别的MATLAB程序示例可以参考以下链接:https://github.com/chenzhao0426/BP-Neural-Network-for-MNIST-Handwritten-Digit-Recognition-in-MATLAB。
首先,需要准备一个手写数字数据集,可以使用MNIST数据集,它包含有60,000张训练图像和10,000张测试图像。 接下来,需要对数据集进行预处理,将图像转换成向量,并且对像素值进行归一化处理。 然后,需要定义神经网络模型。在这里,我们可以使用一个三层的全连接神经网络,其中第一层包含784个神经元(即将图像转换成的向量的长度),第二层包含256个神经元,第三层包含10个神经元(因为我们要识别10个不同的手写数字)。 接下来,需要使用反向传播算法来训练模型。在训练过程中,我们需要定义损失函数和优化器。常用的损失函数包括均方误差(MSE)和交叉熵(Cross-Entropy),常用的优化器包括随机梯度下降(SGD)和Adam。 最后,需要使用测试数据对模型进行评估,并且可以使用混淆矩阵来分析模型的性能。 以下是一个简单的bp神经网络手写数字识别的Matlab代码示例: matlab % Load the training data trainData = loadMNISTImages('train-images.idx3-ubyte'); trainLabels = loadMNISTLabels('train-labels.idx1-ubyte'); % Load the testing data testData = loadMNISTImages('t10k-images.idx3-ubyte'); testLabels = loadMNISTLabels('t10k-labels.idx1-ubyte'); % Preprocess the data trainData = trainData'; testData = testData'; trainData = trainData / 255; testData = testData / 255; % Define the neural network model inputSize = size(trainData, 2); hiddenSize = 256; outputSize = 10; net = patternnet(hiddenSize); % Train the neural network model net.divideFcn = ''; net.trainParam.epochs = 100; net.trainParam.lr = 0.1; net.performFcn = 'crossentropy'; net = train(net, trainData', dummyvar(trainLabels+1)'); % Test the neural network model testOutputs = net(testData'); [~,testPred] = max(testOutputs); testPred = testPred - 1; testAccuracy = sum(testPred' == testLabels) / numel(testLabels); % Display the confusion matrix figure; plotconfusion(dummyvar(testLabels+1)',testOutputs); 其中,loadMNISTImages和loadMNISTLabels是用于加载MNIST数据集的函数。dummyvar是用于将标签向量转换成独热编码的函数。patternnet是用于创建全连接神经网络模型的函数。train是用于训练神经网络模型的函数。plotconfusion是用于绘制混淆矩阵的函数。
以下是一个示例的matlabbp神经网络手写数字识别程序: 首先,需要准备数据。这里使用MNIST数据集,包含60000个手写数字训练样本和10000个测试样本。可以从网上下载并解压缩到本地路径下,例如: train_images_path = './mnist/train-images-idx3-ubyte'; train_labels_path = './mnist/train-labels-idx1-ubyte'; test_images_path = './mnist/t10k-images-idx3-ubyte'; test_labels_path = './mnist/t10k-labels-idx1-ubyte'; 然后,读取数据到matlab中: train_images = loadMNISTImages(train_images_path)'; train_labels = loadMNISTLabels(train_labels_path); test_images = loadMNISTImages(test_images_path)'; test_labels = loadMNISTLabels(test_labels_path); 接下来,先定义神经网络的结构。这里使用3层全连接神经网络,输入层有784个神经元(即28x28的图片展开成一维向量),隐藏层有50个神经元,输出层有10个神经元(分别表示0-9这10个数字): input_layer_size = 784; hidden_layer_size = 50; output_layer_size = 10; 然后,初始化神经网络的权重和偏置: W1 = randn(input_layer_size, hidden_layer_size) / sqrt(input_layer_size); b1 = zeros(1, hidden_layer_size); W2 = randn(hidden_layer_size, output_layer_size) / sqrt(hidden_layer_size); b2 = zeros(1, output_layer_size); 接着,定义损失函数。这里使用交叉熵损失函数: loss_fn = @(y_hat, y) -mean(sum(y .* log(y_hat), 2)); 然后,定义优化器。这里使用随机梯度下降(SGD)算法: learning_rate = 0.1; batch_size = 32; num_epochs = 10; num_batches = ceil(size(train_images, 1) / batch_size); for epoch = 1:num_epochs shuffle_idx = randperm(size(train_images, 1)); train_images = train_images(shuffle_idx, :); train_labels = train_labels(shuffle_idx); for batch = 1:num_batches start_idx = (batch - 1) * batch_size + 1; end_idx = min(batch * batch_size, size(train_images, 1)); batch_images = train_images(start_idx:end_idx, :); batch_labels = train_labels(start_idx:end_idx, :); [y_hat, z] = forward_propagation(batch_images, W1, b1, W2, b2); loss = loss_fn(y_hat, batch_labels); [dW1, db1, dW2, db2] = backward_propagation(batch_images, batch_labels, y_hat, z, W2); W1 = W1 - learning_rate * dW1; b1 = b1 - learning_rate * db1; W2 = W2 - learning_rate * dW2; b2 = b2 - learning_rate * db2; end [y_hat, ~] = forward_propagation(test_images, W1, b1, W2, b2); [~, predicted_labels] = max(y_hat, [], 2); accuracy = sum(predicted_labels == test_labels) / length(test_labels); fprintf('Epoch %d, loss = %f, accuracy = %f\n', epoch, loss, accuracy); end 最后,定义前向传播和反向传播函数: function [y_hat, z] = forward_propagation(X, W1, b1, W2, b2) z = X * W1 + b1; a = relu(z); y_hat = softmax(a * W2 + b2); end function [dW1, db1, dW2, db2] = backward_propagation(X, y, y_hat, z, W2) delta2 = y_hat - y; dW2 = z' * delta2; db2 = mean(delta2, 1); delta1 = delta2 * W2' .* relu_gradient(z); dW1 = X' * delta1; db1 = mean(delta1, 1); end 其中,relu和softmax分别是激活函数,relu_gradient是relu函数的导数。
BP神经网络是一种具有很强的非线性映射能力和柔性网络结构的神经网络。它可以用于处理手写数字数据集MNIST,并且在MATLAB中可以进行实现和训练。 在MATLAB中,可以使用神经网络工具箱来构建和训练BP神经网络。以下是一个简单的示例代码,演示了如何使用MATLAB进行手写数字识别: matlab % 加载MNIST数据集 load mnist_dataset.mat % 将数据集分为训练集和测试集 trainData = double(train_images) / 255; trainLabels = train_labels; testData = double(test_images) / 255; testLabels = test_labels; % 构建BP神经网络 net = patternnet([100 50]); % 设置网络结构,这里使用两个隐藏层,分别有100和50个神经元 net.trainParam.epochs = 100; % 设置训练的迭代次数 net.trainParam.lr = 0.01; % 设置学习率 % 训练神经网络 net = train(net, trainData', ind2vec(trainLabels'+1)); % 使用训练好的网络进行预测 predictedLabels = vec2ind(net(testData')) - 1; % 计算准确率 accuracy = sum(predictedLabels == testLabels') / numel(testLabels); % 显示准确率 disp(['准确率:', num2str(accuracy)]); 这段代码首先加载了MNIST数据集,然后将数据集分为训练集和测试集。接下来,使用patternnet函数构建了一个BP神经网络,设置了网络的结构和训练参数。然后,使用train函数对网络进行训练。最后,使用训练好的网络对测试集进行预测,并计算准确率。 请注意,这只是一个简单的示例,实际上,使用BP神经网络进行手写数字识别可能需要更复杂的网络结构和更多的训练数据来获得更好的性能。
BP神经网络是一种常用的机器学习算法,用于分类和识别问题。在Matlab中实现BP神经网络进行手写数字识别可以按照以下步骤进行: 1. 数据预处理:首先需要准备手写数字的训练数据集和测试数据集。训练数据集是手写数字的图像,每个图像都有相应的标签来表示对应的数字。通过加载数据集,将图像数据和标签分别存储在矩阵中。 2. 网络构建:使用Matlab中的神经网络工具箱,可以方便地构建BP神经网络。可以选择输入层、隐藏层和输出层的神经元个数,自行调整网络的拓扑结构。 3. 网络训练:通过将训练数据集输入到网络中,进行网络训练。可以选择合适的学习率和训练轮数,使用网络反向传播算法进行权值更新,直至网络收敛。 4. 网络测试:使用训练好的网络对测试数据集进行测试。将测试数据输入到网络中,得到网络输出的预测结果。将预测结果与实际标签进行比较,计算分类准确率来评估网络的性能。 5. 网络应用:训练好的BP神经网络可以用于识别手写数字。输入手写数字图像,将图像数据输入到已训练好的网络中,得到网络输出的预测结果即可。 在Matlab中实现BP神经网络进行手写数字识别,可以借助神经网络工具箱提供的函数和工具,简化了网络的构建、训练和测试过程。同时,可以根据实际需求进行参数的调整和网络结构的优化,以提高手写数字识别的准确率和性能。

最新推荐

0337、空调室温控制的质量与节能.rar

全国大学生电子设计竞赛(National Undergraduate Electronics Design Contest)学习资料,试题,解决方案及源码。计划或参加电赛的同学可以用来学习提升和参考

定制linux内核(linux2.6.32)汇编.pdf

定制linux内核(linux2.6.32)汇编.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

图像处理进阶:基于角点的特征匹配

# 1. 图像处理简介 ## 1.1 图像处理概述 图像处理是指利用计算机对图像进行获取、存储、传输、显示和图像信息的自动化获取和处理技术。图像处理的主要任务包括图像采集、图像预处理、图像增强、图像复原、图像压缩、图像分割、目标识别与提取等。 ## 1.2 图像处理的应用领域 图像处理广泛应用于医学影像诊断、遥感图像处理、安检领域、工业自动化、计算机视觉、数字图书馆、人脸识别、动作捕捉等多个领域。 ## 1.3 图像处理的基本原理 图像处理的基本原理包括数字图像的表示方式、基本的图像处理操作(如灰度变换、空间滤波、频域滤波)、图像分割、特征提取和特征匹配等。图像处理涉及到信号与系统、数字

Cannot resolve class android.support.constraint.ConstraintLayout

如果您在Android Studio中遇到`Cannot resolve class android.support.constraint.ConstraintLayout`的错误,请尝试以下解决方案: 1. 确认您的项目中是否添加了ConstraintLayout库依赖。如果没有,请在您的build.gradle文件中添加以下依赖: ```groovy dependencies { implementation 'com.android.support.constraint:constraint-layout:<version>' } ``` 其中`<version>`为您想要

Solaris常用命令_多路径配置.doc

Solaris常用命令_多路径配置.doc

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

Apache HTTP Server动静资源分离下的Nginx对比分析

# 1. 引言 ## 1.1 背景介绍 在Web服务器领域,Apache HTTP Server(简称Apache)一直是广泛应用的开源软件之一,提供了稳定、可靠的服务。随着网络技术的不断发展,网站对于动态和静态资源的需求也越来越复杂。为了更好地提升网站的性能和效率,动静资源分离成为了一个重要的优化方向。而在动静资源分离方面,Nginx作为备受关注的替代品备受瞩目。 ## 1.2 目的和意义 本文旨在探讨Apache HTTP Server和Nginx在动静资源分离方面的特点及优势,通过对比它们在性能、效率和安全性方面的表现,帮助读者更好地了解如何在实际应用中选择合适的服务器软件。

Html css JS promise await 形式 实现红绿灯变化

好的,我了解你的问题。这里我将使用HTML、CSS和JavaScript语言来实现红绿灯的promise和await实现。 首先,我们需要定义一个HTML页面,包含一个div元素和三个button元素。这个div元素用来模拟红绿灯,三个button元素用来控制红绿灯的变化。 ```html <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>红绿灯</title> <style> #light { width: 100px; height: 100px; border

LOGO语言辅导.ppt

LOGO语言辅导.ppt