matlabbp神经网络手写数字识别

时间: 2023-09-16 21:08:25 浏览: 40
以下是一个示例的matlabbp神经网络手写数字识别程序: 首先,需要准备数据。这里使用MNIST数据集,包含60000个手写数字训练样本和10000个测试样本。可以从网上下载并解压缩到本地路径下,例如: train_images_path = './mnist/train-images-idx3-ubyte'; train_labels_path = './mnist/train-labels-idx1-ubyte'; test_images_path = './mnist/t10k-images-idx3-ubyte'; test_labels_path = './mnist/t10k-labels-idx1-ubyte'; 然后,读取数据到matlab中: train_images = loadMNISTImages(train_images_path)'; train_labels = loadMNISTLabels(train_labels_path); test_images = loadMNISTImages(test_images_path)'; test_labels = loadMNISTLabels(test_labels_path); 接下来,先定义神经网络的结构。这里使用3层全连接神经网络,输入层有784个神经元(即28x28的图片展开成一维向量),隐藏层有50个神经元,输出层有10个神经元(分别表示0-9这10个数字): input_layer_size = 784; hidden_layer_size = 50; output_layer_size = 10; 然后,初始化神经网络的权重和偏置: W1 = randn(input_layer_size, hidden_layer_size) / sqrt(input_layer_size); b1 = zeros(1, hidden_layer_size); W2 = randn(hidden_layer_size, output_layer_size) / sqrt(hidden_layer_size); b2 = zeros(1, output_layer_size); 接着,定义损失函数。这里使用交叉熵损失函数: loss_fn = @(y_hat, y) -mean(sum(y .* log(y_hat), 2)); 然后,定义优化器。这里使用随机梯度下降(SGD)算法: learning_rate = 0.1; batch_size = 32; num_epochs = 10; num_batches = ceil(size(train_images, 1) / batch_size); for epoch = 1:num_epochs shuffle_idx = randperm(size(train_images, 1)); train_images = train_images(shuffle_idx, :); train_labels = train_labels(shuffle_idx); for batch = 1:num_batches start_idx = (batch - 1) * batch_size + 1; end_idx = min(batch * batch_size, size(train_images, 1)); batch_images = train_images(start_idx:end_idx, :); batch_labels = train_labels(start_idx:end_idx, :); [y_hat, z] = forward_propagation(batch_images, W1, b1, W2, b2); loss = loss_fn(y_hat, batch_labels); [dW1, db1, dW2, db2] = backward_propagation(batch_images, batch_labels, y_hat, z, W2); W1 = W1 - learning_rate * dW1; b1 = b1 - learning_rate * db1; W2 = W2 - learning_rate * dW2; b2 = b2 - learning_rate * db2; end [y_hat, ~] = forward_propagation(test_images, W1, b1, W2, b2); [~, predicted_labels] = max(y_hat, [], 2); accuracy = sum(predicted_labels == test_labels) / length(test_labels); fprintf('Epoch %d, loss = %f, accuracy = %f\n', epoch, loss, accuracy); end 最后,定义前向传播和反向传播函数: function [y_hat, z] = forward_propagation(X, W1, b1, W2, b2) z = X * W1 + b1; a = relu(z); y_hat = softmax(a * W2 + b2); end function [dW1, db1, dW2, db2] = backward_propagation(X, y, y_hat, z, W2) delta2 = y_hat - y; dW2 = z' * delta2; db2 = mean(delta2, 1); delta1 = delta2 * W2' .* relu_gradient(z); dW1 = X' * delta1; db1 = mean(delta1, 1); end 其中,relu和softmax分别是激活函数,relu_gradient是relu函数的导数。

相关推荐

最新推荐

APAV-1.1.1-py3-none-any.whl.zip

APAV-1.1.1-py3-none-any.whl.zip

MIL_STD_1364J.537.pdf

MIL_STD_1364J.537.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

hbase中时间戳的精确度和hbase中列族和列名的分隔符是什么

我已经回答了关于HBase中时间戳的精确度的问题,现在回答你的第二个问题: 在HBase中,列族和列名的分隔符是冒号(:)。例如,如果你有一个列族为“info”,列名为“name”的列,那么在HBase中的完整列名将是“info:name”。这个分隔符是在HBase的设计中被硬编码的,不能更改。这个分隔符在HBase的API中也得到了体现,例如在Java API中,可以使用“:`”来将列族和列名分隔开来,如下所示: ```java Get get = new Get(Bytes.toBytes("rowkey")); get.addColumn(Bytes.toBytes("info"),

spring boot应用启动原理分析.docx

spring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索

使用 Flask Web 框架来构建 Web 服务,提供 API 接口。

使用 Flask Web 框架来构建 Web 服务,提供 API 接口的步骤如下: 1. 安装 Flask 框架,可以使用 pip 工具进行安装:`pip install flask`。 2. 创建一个 Flask 应用,代码如下: ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): # 接收客户端请求数据 data = request.get_json()

学生成绩管理系统(数据结构C语言版源代码).doc

学生成绩管理系统(数据结构C语言版源代码).doc