class PatchEmbed(nn.Module): """ 2D Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None): super().__init__() img_size = (img_size, img_size) patch_size = (patch_size, patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): B, C, H, W = x.shape assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." # flatten: [B, C, H, W] -> [B, C, HW] # transpose: [B, C, HW] -> [B, HW, C] x = self.proj(x).flatten(2).transpose(1, 2) x = self.norm(x) return x
时间: 2024-04-19 15:24:52 浏览: 180
这是一个名为`PatchEmbed`的类,用于将2D图像转换为补丁嵌入。它主要用于图像分类任务中。下面是该类的主要组成部分:
- `__init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None)`:类的初始化函数,定义了输入图像的大小`img_size`、补丁的大小`patch_size`、输入通道数`in_c`、嵌入维度`embed_dim`以及规范化层`norm_layer`。
- `forward(self, x)`:前向传播函数,接收输入张量`x`,进行补丁嵌入操作。首先,根据输入图像的大小和补丁大小计算出网格的大小,并计算出补丁的数量。然后,通过卷积操作将输入图像转换为嵌入表示。最后,进行规范化操作并返回结果。
在这个类中,`PatchEmbed`利用卷积操作将输入图像分割为固定大小的补丁,并将每个补丁转换为嵌入表示。这种嵌入操作可以帮助模型更好地捕捉图像的局部信息,从而提高图像分类性能。
相关问题
class CBOW(torch.nn.Module): def __init__(self, word_size, embedding_dim): super(CBOW, self).__init__() self.embeddings = nn.Embedding(word_size, embedding_dim) self.linear1 = nn.Linear(embedding_dim, 128) self.activation_function1 = nn.ReLU() self.linear2 = nn.Linear(128, word_size) self.activation_function2 = nn.LogSoftmax(dim = -1)
这段代码定义了一个CBOW(Continuous Bag-of-Words)模型的类CBOW。CBOW模型是一种用于自然语言处理的神经网络模型。
在__init__方法中,模型的初始化操作被定义。它接受两个参数:word_size和embedding_dim。word_size表示词汇表的大小,embedding_dim表示词向量的维度。
在模型的初始化过程中,首先创建了一个Embedding层self.embeddings,它将输入的单词索引映射为词向量。Embedding层的大小为(word_size, embedding_dim),其中word_size是词汇表的大小,embedding_dim是词向量的维度。
接下来,定义了两个线性层self.linear1和self.linear2。self.linear1将词向量映射到一个大小为128的隐藏层,然后通过激活函数self.activation_function1(这里使用了ReLU)进行非线性变换。self.linear2将隐藏层的输出映射为最终的预测结果,大小为word_size。最后,通过self.activation_function2(这里使用了LogSoftmax)对预测结果进行归一化。
这样,CBOW模型的架构就定义好了,可以用于训练和预测。
class SegModel(torch.nn.Module): """分词模型""" def __init__(self, vocab_size: int, embedding_size: int, hidden_size: int): super().__init__() self.embedding = torch.nn.Embedding(vocab_size, embedding_size, padding_idx=0) self.lstm = torch.nn.LSTM(embedding_size, hidden_size, batch_first=True, bidirectional=True) self.linear = torch.nn.Linear(2 * hidden_size, 1) self.sigmoid = torch.nn.Sigmoid() def forward(self, inputs: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: embeddings = self.embedding(inputs) outputs, _ = self.lstm(embeddings) logits = self.linear(outputs) logits = logits.squeeze(-1) logits = self.sigmoid(logits) logits = logits * mask return logits
这是一个使用 PyTorch 实现的分词模型,采用了 LSTM 神经网络结构。该模型的输入是一个大小为 `(batch_size, sequence_length)` 的整数张量 `inputs`,表示分词器需要对其中的文本进行分词,其中 `batch_size` 表示批次大小,`sequence_length` 表示序列长度。此外,还需要输入一个大小为 `(batch_size, sequence_length)` 的二元张量 `mask`,其中每个元素表示对应文本是否为填充,即 `1` 表示不是填充,`0` 表示是填充。
模型的输出是一个大小为 `(batch_size, sequence_length)` 的浮点数张量,其中每个元素表示对应位置是否需要分词,即 `1` 表示需要分词,`0` 表示不需要分词。
在模型的构造函数中,首先调用了基类 `torch.nn.Module` 的构造函数来初始化模型。然后,定义了一个 `torch.nn.Embedding` 层,用于将输入的整数张量转换为词向量。接下来,定义了一个双向 LSTM 层,用于学习输入序列的上下文信息。最后,定义了一个全连接层和一个 sigmoid 激活函数,用于将 LSTM 输出转换为需要分词的概率。在模型的前向传播过程中,首先将输入文本转换为词向量,然后通过 LSTM 层计算序列的上下文信息,再通过全连接层和 sigmoid 激活函数计算需要分词的概率,并与 `mask` 做点乘,得到最终的输出。
阅读全文