自适应遗传算法AGA代码
时间: 2023-09-06 08:08:33 浏览: 375
以下是一个使用自适应遗传算法(Adaptive Genetic Algorithm, AGA)的基本代码示例:
```python
import numpy as np
# 定义问题的目标函数
def objective_function(x):
return x**2
# 定义自适应遗传算法类
class AGA:
def __init__(self, population_size, chromosome_length, mutation_rate):
self.population_size = population_size
self.chromosome_length = chromosome_length
self.mutation_rate = mutation_rate
# 初始化种群
self.population = np.random.randint(2,
相关问题
自适应遗传算法AGA代码python
以下是一个简单的自适应遗传算法(Adaptive Genetic Algorithm, AGA)的 Python 代码示例:
```python
import random
# 遗传算法的参数设置
population_size = 50 # 种群大小
chromosome_length = 10 # 染色体长度
mutation_rate = 0.01 # 变异概率
crossover_rate = 0.8 # 交叉概率
max_generation = 100 # 最大迭代次数
# 初始化种群
def init_population():
population = []
for _ in range(population_size):
chromosome = [random.randint(0, 1) for _ in range(chromosome_length)]
population.append(chromosome)
return population
# 计算个体适应度
def calculate_fitness(chromosome):
fitness = sum(chromosome)
return fitness
# 选择操作(轮盘赌选择)
def select(population):
fitness_sum = sum(calculate_fitness(chromosome) for chromosome in population)
probabilities = [calculate_fitness(chromosome) / fitness_sum for chromosome in population]
cumulative_probabilities = [sum(probabilities[:i+1]) for i in range(len(probabilities))]
selected_population = []
for _ in range(population_size):
rand = random.random()
for i in range(len(cumulative_probabilities)):
if rand <= cumulative_probabilities[i]:
selected_population.append(population[i])
break
return selected_population
# 交叉操作(单点交叉)
def crossover(population):
offspring_population = []
for i in range(0, population_size, 2):
parent1 = population[i]
parent2 = population[i+1]
if random.random() < crossover_rate:
crossover_point = random.randint(0, chromosome_length - 1)
offspring1 = parent1[:crossover_point] + parent2[crossover_point:]
offspring2 = parent2[:crossover_point] + parent1[crossover_point:]
else:
offspring1 = parent1
offspring2 = parent2
offspring_population.extend([offspring1, offspring2])
return offspring_population
# 变异操作(位翻转变异)
def mutate(population):
for i in range(population_size):
for j in range(chromosome_length):
if random.random() < mutation_rate:
population[i][j] = 1 - population[i][j]
return population
# 主函数,执行遗传算法
def genetic_algorithm():
population = init_population()
generation = 0
while generation < max_generation:
selected_population = select(population)
offspring_population = crossover(selected_population)
mutated_population = mutate(offspring_population)
population = mutated_population
generation += 1
best_individual = max(population, key=calculate_fitness)
best_fitness = calculate_fitness(best_individual)
print("Best individual:", best_individual)
print("Best fitness:", best_fitness)
# 执行遗传算法
genetic_algorithm()
```
这段代码实现了一个简单的自适应遗传算法(Adaptive Genetic Algorithm, AGA)。其中,种群大小为 `population_size`,染色体长度为 `chromosome_length`,变异概率为 `mutation_rate`,交叉概率为 `crossover_rate`,最大迭代次数为 `max_generation`。代码中的遗传算法包括初始化种群、计算个体适应度、选择操作(轮盘赌选择)、交叉操作(单点交叉)和变异操作(位翻转变异)。最后输出迭代结束后的最佳个体和适应度。
请注意,这只是一个简单的示例代码,实际应用中可能需要根据具体问题进行修改和优化。
自适应遗传算法代码python
自适应遗传算法(Adaptive Genetic Algorithm, AGA)是一种基于自然选择过程的优化搜索算法,它结合了传统遗传算法的随机性和进化策略的学习能力。在Python中实现AGA,你可以遵循以下步骤:
1. **导入库**:
首先需要导入必要的库,如`numpy`用于数值计算,`random`生成随机数,以及`copy`进行浅复制。
```python
import numpy as np
import random
from copy import deepcopy
```
2. **初始化**:
- 定义种群大小、染色体长度、基因编码等。
- 初始化种群(一组解,即染色体),通常随机生成。
```python
def initialize_population(population_size, chromosome_length):
population = [np.random.rand(chromosome_length) for _ in range(population_size)]
return population
```
3. **适应度函数**:
根据你要解决的问题定义适应度函数,这个函数将个体转换为评估值。
```python
def fitness_function(individual):
# 这里替换为实际问题的评估函数
pass
```
4. **选择操作**:
可能包括轮盘赌选择(roulette wheel selection)、锦标赛选择等,选出部分个体作为父代。
5. **交叉操作**:
实现两个父代的交叉(crossover),例如单点交叉、均匀交叉等。
6. **变异操作**:
在子代中添加一些变异,如单点突变、插入或删除基因等。
```python
def mutation(individual, mutation_rate):
for i in range(len(individual)):
if random.random() < mutation_rate:
individual[i] += random.uniform(-1, 1)
return individual
```
7. **自适应调整**:
根据当前种群的性能,动态调整某些参数,如交叉率、变异率等。
8. **迭代**:
重复上述步骤,直到达到预设的停止条件(如最大迭代次数或达到满意的适应度阈值)。
9. **返回最优解**:
最终,种群中的最优个体就是所求的解决方案。
```python
def adaptive_genetic_algorithm(population_size, chromosome_length, max_iterations, ...):
# 主循环
best_solution = None
for _ in range(max_iterations):
... (运行选择、交叉、变异等操作)
if not best_solution or fitness_function(best_solution[0]) > fitness_function(current_best):
best_solution = current_best
return best_solution
```
阅读全文