def _eval_nme(self, loader, class_means): self._network.eval() vectors, y_true = self._extract_vectors(loader) vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T dists = cdist(class_means, vectors, "sqeuclidean") scores = dists.T return np.argsort(scores, axis=1)[:, : self.topk], y_true

时间: 2024-04-20 10:22:18 浏览: 12
这段代码是一个用于计算NME(Normalized Mean Error)的函数。它接受一个数据加载器(loader)和一个类别均值(class_means)作为输入,并返回排序后的预测得分(scores)和真实标签(y_true)。 首先,代码将模型设置为评估模式(self._network.eval())。然后,通过调用_extract_vectors(loader)函数,从加载器中提取特征向量(vectors)和真实标签(y_true)。 接下来,代码对特征向量进行归一化处理。将特征向量的每一列除以其L2范数加上一个很小的常数EPSILON,以避免除以零。归一化后的特征向量存储在vectors中。 然后,代码使用cdist函数计算类别均值(class_means)与归一化特征向量(vectors)之间的平方欧氏距离(sqeuclidean)。这将生成一个距离矩阵(dists),其中每行表示一个类别的距离分布。 最后,代码将距离矩阵转置后作为预测得分(scores)返回,并使用np.argsort函数按行对得分进行排序。排序后的结果中,每行包含前topk个最小得分的索引。同时,真实标签(y_true)也被返回。 注意:这段代码的具体实现可能依赖于其他函数或类的定义,因此需要结合整个代码的上下文来理解其完整功能和使用方式。
相关问题

运行class GuidedBackpropReLUModel: def __init__(self, model, use_cuda): self.model = model self.model.eval() self.cuda = use_cuda if self.cuda: self.model = model.cuda() for idx, module in self.model.features._modules.items(): if module.__class__.__name__ == 'ReLU': self.model.features._modules[idx] = GuidedBackpropReLU() def forward(self, input): return self.model(input) def forward_static(self, input): if self.cuda: output = self.forward(input.cuda()) else: output = self.forward(input) return output def __call__(self, input, index = None): output = self.forward_static(input) if index == None: index = np.argmax(output.cpu().data.numpy()) one_hot = np.zeros((1, output.size()[-1]), dtype = np.float32) one_hot[0][index] = 1 one_hot = Variable(torch.from_numpy(one_hot), requires_grad = True) if self.cuda: one_hot = torch.sum(one_hot.cuda() * output) else: one_hot = torch.sum(one_hot * output) one_hot.backward() output = input.grad.cpu().data.numpy() output = output[0,:,:,:] return output报错Legacy autograd function with non-static forward method is deprecated. Please use new-style autograd function with static forward method. 如何修改代码

这个错误提示是因为代码中使用了旧版本的autograd函数,需要使用新版本的autograd函数。可以使用`@staticmethod`修饰`GuidedBackpropReLU`类中的`forward`方法,将其转换为静态方法。修改后的代码如下: ``` class GuidedBackpropReLU(nn.ReLU): @staticmethod def forward(input): output = torch.clamp(input, min=0.0) grad = torch.zeros_like(output) grad[output > 0] = 1.0 output = output * grad return output class GuidedBackpropReLUModel: def __init__(self, model, use_cuda): self.model = model self.model.eval() self.cuda = use_cuda if self.cuda: self.model = model.cuda() for idx, module in self.model.features._modules.items(): if module.__class__.__name__ == 'ReLU': self.model.features._modules[idx] = GuidedBackpropReLU() def forward(self, input): return self.model(input) def forward_static(self, input): if self.cuda: output = self.forward(input.cuda()) else: output = self.forward(input) return output def __call__(self, input, index=None): output = self.forward_static(input) if index is None: index = np.argmax(output.cpu().data.numpy()) one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) one_hot[0][index] = 1 one_hot = Variable(torch.from_numpy(one_hot), requires_grad=True) if self.cuda: one_hot = torch.sum(one_hot.cuda() * output) else: one_hot = torch.sum(one_hot * output) one_hot.backward() output = input.grad.cpu().data.numpy() output = output[0, :, :, :] return output ```

def _eval_cnn(self, loader): self._network.eval() y_pred, y_true = [], [] for _, (_, inputs, targets) in enumerate(loader): inputs = inputs.to(self._device) with torch.no_grad(): outputs = self._network(inputs)["logits"] predicts = torch.topk( outputs, k=self.topk, dim=1, largest=True, sorted=True )[ 1 ] # [bs, topk] y_pred.append(predicts.cpu().numpy()) y_true.append(targets.cpu().numpy()) return np.concatenate(y_pred), np.concatenate(y_true) # [N, topk]

这段代码是一个方法`_eval_cnn`的实现,它用于在给定数据加载器(loader)上评估一个卷积神经网络(CNN)模型。 代码的主要步骤如下: 1. 将网络设置为评估模式,即将其切换为推断模式,以便禁用一些不必要的计算和梯度更新。 2. 创建空列表`y_pred`和`y_true`,用于存储预测结果和真实标签。 3. 对于每个批次数据,在数据加载器上进行迭代。 4. 将输入数据(inputs)移动到指定设备(self._device),通常是GPU。 5. 使用torch.no_grad()上下文管理器,禁用梯度计算。 6. 通过网络传递输入数据,得到输出(outputs)。这里假设网络的输出是一个字典,其中包含名为"logits"的键对应的预测结果。 7. 对于每个样本,使用torch.topk函数找到输出中概率最高的前k个类别,并将其索引保存在predicts中。这里假设输出是一个形状为[批次大小, 类别数]的张量。 8. 将predicts转换为NumPy数组,并添加到y_pred列表中。 9. 将真实标签(targets)转换为NumPy数组,并添加到y_true列表中。 10. 返回合并后的预测结果(y_pred)和真实标签(y_true),形状为[N, topk],其中N是样本数量。 需要注意的是,此代码片段使用了PyTorch库进行深度学习模型的评估,并假设CNN模型的输出包含一个名为"logits"的键对应的预测结果。

相关推荐

import sys from PyQt5.QtWidgets import QApplication, QWidget , QMainWindow from Calui1 import Ui_Form class Mywindow(QWidget,Ui_Form): def __init__(self): super(Mywindow,self).__init__() self.setupUi(self) def btnClear_clicked(self): self.lineEdit.clear() def btn1(self): self.lineEdit.insert("1") def btn2(self): self.lineEdit.insert("2") def btn3(self): self.lineEdit.insert("3") def btn4(self): self.lineEdit.insert("4") def btn5(self): self.lineEdit.insert("5") def btn6(self): self.lineEdit.insert("6") def btn7(self): self.lineEdit.insert("7") def btn8(self): self.lineEdit.insert("8") def btn9(self): self.lineEdit.insert("9") def btn0(self): self.lineEdit.insert("0") def btn_plus(self): self.lineEdit.insert("+") def btn_sub(self): self.lineEdit.insert("-") def btn_mul(self): self.lineEdit.insert("*") def btn_div(self): self.lineEdit.insert("/") def btnequal(self): text=self.lineEdit.text() self.lineEdit.insert("= %.2f" %(eval(text))) if __name__=='__main__': app=QApplication(sys.argv) win=Mywindow() win.pushButton_7.clicked.connect(win.btnClear_clicked()) win.pushButton.clicked.connect(win.btn1()) win.pushButton_2.clicked.connect(win.btn2()) win.pushButton_3.clicked.connect(win.btn3()) win.pushButton_4.clicked.connect(win.btn_plus()) win.pushButton_5.clicked.connect(win.btn4()) win.pushButton_6.clicked.connect(win.btn7()) win.pushButton_8.clicked.connect(win.btn5()) win.pushButton_9.clicked.connect(win.btn8()) win.pushButton_10.clicked.connect(win.btn0()) win.pushButton_11.clicked.connect(win.btn6()) win.pushButton_12.clicked.connect(win.btn9()) win.pushButton_13.clicked.connect(win.btnequal()) win.pushButton_14.clicked.connect(win.btn_sub()) win.pushButton_15.clicked.connect(win.btn_mul()) win.pushButton_16.clicked.connect(win.btn_div()) win.show() sys.exit(app.exec_())错在哪

这段代码中加一个test loss功能 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(65536, self.output_size) def forward(self, input_seq): h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output.contiguous().view(self.batch_size, -1)) return pred if __name__ == '__main__': # 加载已保存的模型参数 saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth' device = 'cuda:0' lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device='cuda:0').to(device) state_dict = torch.load(saved_model_path) lstm_model.load_state_dict(state_dict) dataset = ECGDataset(X_train_df.to_numpy()) dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=0, drop_last=True) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4) for epoch in range(200000): print(f'epoch:{epoch}') lstm_model.train() epoch_bar = tqdm(dataloader) for x, y in epoch_bar: optimizer.zero_grad() x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor)) loss = loss_fn(x_out, y.long().to(device)) loss.backward() epoch_bar.set_description(f'loss:{loss.item():.4f}') optimizer.step() if epoch % 100 == 0 or epoch == epoch - 1: torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth") print("权重成功保存一次")

最新推荐

recommend-type

node-v0.8.10-sunos-x64.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

【课程设计】实现的金融风控贷款违约预测python源码.zip

【课程设计】实现的金融风控贷款违约预测python源码.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

Windows 运行Python脚本

要在 Windows 上运行 Python 脚本,你需要先安装 Python。可以从官网下载 Python 安装包并按照提示进行安装。安装完成后,就可以在命令行中输入 `python` 命令,进入 Python 解释器环境。 接着,你可以编写 Python 脚本,保存为 `.py` 后缀的文件。在命令行中进入脚本所在的目录,输入 `python script.py` 命令来运行脚本。其中 `script.py` 是你的脚本文件名。 如果你想在 Windows 上运行一个 Python 程序,但不想打开命令行窗口,可以将脚本文件拖动到 Python 可执行文件 `python.exe` 上,