//使用三线性插值方法,计算直方图 float v_r1 = mag * rbin;//第二行分配的值 float v_r0 = mag - v_r1;//第一行分配的值 float v_rc11 = v_r1 * cbin; float v_rc10 = v_r1 - v_rc11; float v_rc01 = v_r0 * cbin; float v_rc00 = v_r0 - v_rc01; float v_rco111 = v_rc11 * obin; float v_rco110 = v_rc11 - v_rco111; float v_rco101 = v_rc10 * obin; float v_rco100 = v_rc10 - v_rco101; float v_rco011 = v_rc01 * obin; float v_rco010 = v_rc01 - v_rco011; float v_rco001 = v_rc00 * obin; float v_rco000 = v_rc00 - v_rco001; //该像素所在网格的索引 int idx = ((r0 + 1)*(d + 2) + c0 + 1)*(n + 2) + o0; hist[idx] += v_rco000; hist[idx + 1] += v_rco001; hist[idx + n + 2] += v_rco010; hist[idx + n + 3] += v_rco011; hist[idx + (d + 2)*(n + 2)] += v_rco100; hist[idx + (d + 2)*(n + 2) + 1] += v_rco101; hist[idx + (d + 3)*(n + 2)] += v_rco110; hist[idx + (d + 3)*(n + 2) + 1] += v_rco111; }opencv c++代码SIFT的部分代码含义

时间: 2024-04-24 22:21:40 浏览: 9
这段代码是SIFT算法中的一部分,用来计算直方图。具体来说,它使用了三线性插值方法来为每个像素分配值,并将这些值累加到对应的直方图bin中。 首先,通过乘以相应的比例因子,将mag(梯度幅值)分配到rbin(梯度方向)上。然后,将rbin再次分配到cbin(梯度方向)上,并将结果存储在v_rc11和v_rc10中。接下来,将v_rc11再次分配到obin(梯度方向)上,并将结果存储在v_rco111和v_rco110中。同样地,将v_rc10和v_rc01分配到obin上,并分别存储在v_rco101和v_rco100,v_rco011和v_rco010中。最后,将v_rc00分配到obin上,并将结果存储在v_rco001中。 接下来,计算像素所在网格的索引,并将相应的值累加到hist数组中的对应位置。具体来说,idx是通过将r0、c0和o0映射到hist数组中的索引计算得到的。然后,将v_rco000累加到hist[idx],将v_rco001累加到hist[idx + 1],依此类推。 总而言之,这段代码的作用是根据像素的梯度信息,将梯度幅值分配到直方图的相应bin中,以用于后续的特征描述子生成。
相关问题

pow_frames = ((1.0 / NFFT) * ((mag_frames) ** 2))出现le8是什么意思

"le8"可能是指小于等于8(less than or equal to 8),表示在计算中出现了非常小的数,可能是由于计算精度或数据精度的限制造成的。在这种情况下,你可以尝试使用更高精度的数据类型,例如使用浮点数而不是整数,或者尝试使用更高精度的计算方法,例如使用NumPy库中的函数。如果这个小数对于你的计算结果并不重要,那么忽略它也是一个可行的选择。

所以我只需要将adjusted_fft_frames = mag_frames * np.exp(1j * 2 * np.pi * pitch_freqs_smoothed[:, np.newaxis] * freqs[np.newaxis, :])这段代码替换成pitch_freqs_smoothed = pitch_freqs_smoothed[:, np.newaxis]pitch_freqs_smoothed = np.tile(pitch_freqs_smoothed, (1, mag_frames.shape[1]))adjusted_fft_frames = mag_frames * np.exp(1j * 2 * np.pi * pitch_freqs_smoothed * freqs[np.newaxis, :])就行了吗

是的,你可以将原来的代码替换为新的代码,但是需要注意一下 `freqs` 数组的长度是否正确,以确保可以正确进行广播操作。同时,也需要确保 `pitch_freqs_smoothed` 被正确地转换为 `(198, 882)` 的形状。 完整的代码修改如下: ``` freqs = np.fft.rfftfreq(n_fft, d=1.0/sr) pitch_freqs_smoothed = pitch_freqs_smoothed[:, np.newaxis] pitch_freqs_smoothed = np.tile(pitch_freqs_smoothed, (1, mag_frames.shape[1])) adjusted_fft_frames = mag_frames * np.exp(1j * 2 * np.pi * pitch_freqs_smoothed * freqs[np.newaxis, :]) ``` 这个修改后的代码会将 `pitch_freqs_smoothed` 转换为一个形状为 `(198, 882)` 的数组,然后使用广播机制将其与 `freqs` 相乘,得到一个形状为 `(198, 882)` 的新的振幅谱矩阵 `adjusted_fft_frames`。

相关推荐

最新推荐

recommend-type

毕业设计基于STC12C5A、SIM800C、GPS的汽车防盗报警系统源码.zip

STC12C5A通过GPS模块获取当前定位信息,如果车辆发生异常震动或车主打来电话(主动请求定位),将通过GSM发送一条定位短信到车主手机,车主点击链接默认打开网页版定位,如果有安装高德地图APP将在APP中打开并展示汽车当前位置 GPS模块可以使用多家的GPS模块,需要注意的是,当前程序对应的是GPS北斗双模芯片,故只解析 GNRMC数据,如果你使用GPS芯片则应改为GPRMC数据即可。 系统在初始化的时候会持续短鸣,每初始化成功一部分后将长鸣一声,如果持续短鸣很久(超过20分钟),建议通过串口助手查看系统输出的调试信息,系统串口默认输出从初始化开始的所有运行状态信息。 不过更建议你使用SIM868模块,集成GPS.GSM.GPRS,使用更加方便
recommend-type

基于tensorflow2.x卷积神经网络字符型验证码识别.zip

基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip
recommend-type

自己编写的python 程序计算cpk/ppk

cpk&ppk python 小程序,品友点评
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依