//使用三线性插值方法,计算直方图 float v_r1 = mag * rbin;//第二行分配的值 float v_r0 = mag - v_r1;//第一行分配的值 float v_rc11 = v_r1 * cbin; float v_rc10 = v_r1 - v_rc11; float v_rc01 = v_r0 * cbin; float v_rc00 = v_r0 - v_rc01; float v_rco111 = v_rc11 * obin; float v_rco110 = v_rc11 - v_rco111; float v_rco101 = v_rc10 * obin; float v_rco100 = v_rc10 - v_rco101; float v_rco011 = v_rc01 * obin; float v_rco010 = v_rc01 - v_rco011; float v_rco001 = v_rc00 * obin; float v_rco000 = v_rc00 - v_rco001; //该像素所在网格的索引 int idx = ((r0 + 1)*(d + 2) + c0 + 1)*(n + 2) + o0; hist[idx] += v_rco000; hist[idx + 1] += v_rco001; hist[idx + n + 2] += v_rco010; hist[idx + n + 3] += v_rco011; hist[idx + (d + 2)*(n + 2)] += v_rco100; hist[idx + (d + 2)*(n + 2) + 1] += v_rco101; hist[idx + (d + 3)*(n + 2)] += v_rco110; hist[idx + (d + 3)*(n + 2) + 1] += v_rco111; }opencv c++代码SIFT的部分代码含义

时间: 2024-04-24 16:21:40 浏览: 137
这段代码是SIFT算法中的一部分,用来计算直方图。具体来说,它使用了三线性插值方法来为每个像素分配值,并将这些值累加到对应的直方图bin中。 首先,通过乘以相应的比例因子,将mag(梯度幅值)分配到rbin(梯度方向)上。然后,将rbin再次分配到cbin(梯度方向)上,并将结果存储在v_rc11和v_rc10中。接下来,将v_rc11再次分配到obin(梯度方向)上,并将结果存储在v_rco111和v_rco110中。同样地,将v_rc10和v_rc01分配到obin上,并分别存储在v_rco101和v_rco100,v_rco011和v_rco010中。最后,将v_rc00分配到obin上,并将结果存储在v_rco001中。 接下来,计算像素所在网格的索引,并将相应的值累加到hist数组中的对应位置。具体来说,idx是通过将r0、c0和o0映射到hist数组中的索引计算得到的。然后,将v_rco000累加到hist[idx],将v_rco001累加到hist[idx + 1],依此类推。 总而言之,这段代码的作用是根据像素的梯度信息,将梯度幅值分配到直方图的相应bin中,以用于后续的特征描述子生成。
相关问题

%% 掩膜部分 Z = stft(z, nfft); % STFT变换 Z_mag = abs(Z); % STFT幅度谱 Z_phase = angle(Z); % STFT相位谱 Z_mag_db = 20*log10(Z_mag); % 将幅度谱转换为分贝 Z_mag_db_thresh = max(Z_mag_db) - 25; % 设置阈值 Z_mag_db_thresh(Z_mag_db_thresh<0) = 0; % 阈值为0以下的部分置为0 Z_mag_db_mask = Z_mag_db > Z_mag_db_thresh; % 生成掩码 Z_mag_masked = Z_mag .* Z_mag_db_mask; % 对幅度谱进行掩码 Z_mag_masked(Z_mag_masked<0) = 0; % 掩码为0以下的部分置为0 Z_masked = Z_mag_masked .* exp(1i*Z_phase); % 生成掩码谱 z_enhanced = istft(Z_masked, nfft); % iSTFT变换 G= Y_mag.*Z_masked g=istft(G,nfft); %得到重构后的语音 g=g/max(abs(g)); pause(3) sound(g,fs)这段代码可以怎么优化

1. 使用np.clip函数代替Z_mag_db_thresh<0的判断和置为0的操作,可以提高代码可读性和运行速度。 2. 将Z_mag_db_mask的生成和Z_mag_masked的计算合并为一个步骤,可以减少不必要的数组操作。 3. 考虑使用更快速的STFT和iSTFT实现,例如使用librosa库中的stft和istft函数。 4. 考虑使用多线程或GPU加速来加快计算速度,提高代码性能。 5. 可以使用更高级的音频增强技术,例如基于深度学习的声音增强算法,来进一步提高音频增强效果。

所以我只需要将adjusted_fft_frames = mag_frames * np.exp(1j * 2 * np.pi * pitch_freqs_smoothed[:, np.newaxis] * freqs[np.newaxis, :])这段代码替换成pitch_freqs_smoothed = pitch_freqs_smoothed[:, np.newaxis]pitch_freqs_smoothed = np.tile(pitch_freqs_smoothed, (1, mag_frames.shape[1]))adjusted_fft_frames = mag_frames * np.exp(1j * 2 * np.pi * pitch_freqs_smoothed * freqs[np.newaxis, :])就行了吗

是的,你可以将原来的代码替换为新的代码,但是需要注意一下 `freqs` 数组的长度是否正确,以确保可以正确进行广播操作。同时,也需要确保 `pitch_freqs_smoothed` 被正确地转换为 `(198, 882)` 的形状。 完整的代码修改如下: ``` freqs = np.fft.rfftfreq(n_fft, d=1.0/sr) pitch_freqs_smoothed = pitch_freqs_smoothed[:, np.newaxis] pitch_freqs_smoothed = np.tile(pitch_freqs_smoothed, (1, mag_frames.shape[1])) adjusted_fft_frames = mag_frames * np.exp(1j * 2 * np.pi * pitch_freqs_smoothed * freqs[np.newaxis, :]) ``` 这个修改后的代码会将 `pitch_freqs_smoothed` 转换为一个形状为 `(198, 882)` 的数组,然后使用广播机制将其与 `freqs` 相乘,得到一个形状为 `(198, 882)` 的新的振幅谱矩阵 `adjusted_fft_frames`。
阅读全文

相关推荐

function [Result, cost, SNR]= denoising(input, lambda, max_Iter, label, Ori_Img) cost = []; SNR = []; Img_ori = im2double(input); [height,width,ch] = size(input);1 denom_tmp = (abs(psf2otf([1, -1],[height,width])).^2 + abs(psf2otf([1; -1],[height,width])).^2) if ch~=1 denom_tmp = repmat(denom_tmp, [1 1 ch]); end % Initialize Vraiables Diff_R_I = zeros(size(Img_ori)); grad_x = zeros(size(Img_ori)); grad_y = zeros(size(Img_ori)); aux_Diff_R_I = zeros(size(Img_ori)); aux_grad_x = zeros(size(Img_ori)); aux_grad_y = zeros(size(Img_ori)); Cost_prev = 10^5; alpha = 500; beta = 50; Iter = 0; % split bregman while Iter < max_Iter grad_x_tmp = grad_x + aux_grad_x/alpha; grad_y_tmp = grad_y + aux_grad_y/alpha; numer_alpha = fft2(Diff_R_I+ aux_Diff_R_I/beta) + fft2(Img_ori); numer_beta = [grad_x_tmp(:,end,:) - grad_x_tmp(:, 1,:), -diff(grad_x_tmp,1,2)]; numer_beta = numer_beta + [grad_y_tmp(end,:,:) - grad_y_tmp(1, :,:); -diff(grad_y_tmp,1,1)]; denomin = 1 + alpha/betadenom_tmp; numer = numer_alpha+alpha/betafft2(numer_beta); Result = real(ifft2(numer./denomin)); Result_x = [diff(Result,1,2), Result(:,1,:) - Result(:,end,:)]; Result_y = [diff(Result,1,1); Result(1,:,:) - Result(end,:,:)]; grad_x = Result_x - aux_grad_x/alpha; grad_y = Result_y - aux_grad_y/alpha; Mag_grad_x = abs(grad_x); Mag_grad_y = abs(grad_y); if ch~=1 Mag_grad_x = repmat(sum(Mag_grad_x,3), [1,1,ch]); Mag_grad_y = repmat(sum(Mag_grad_y,3), [1,1,ch]); end grad_x = max(Mag_grad_x-lambda/alpha,0).(grad_x./Mag_grad_x); grad_y = max(Mag_grad_y-lambda/alpha,0).(grad_y./Mag_grad_y); grad_x(Mag_grad_x == 0) = 0; grad_y(Mag_grad_y == 0) = 0; Diff_R_I = Result-Img_ori-aux_Diff_R_I/beta; Mag_Diff_R_I = abs(Diff_R_I); if ch~=1 Mag_Diff_R_I = repmat(sum(Mag_Diff_R_I,3), [1,1,ch]); end if label == 1 Diff_R_I=max(Mag_Diff_R_I-1/beta,0).(Diff_R_I./Mag_Diff_R_I); else Diff_R_I=(beta/(2+beta)) * Diff_R_I; end Diff_R_I(Mag_Diff_R_I == 0) = 0; aux_Diff_R_I = aux_Diff_R_I + beta * (Diff_R_I - (Result - Img_ori )); aux_grad_x = aux_grad_x + alpha * (grad_x - (Result_x )); aux_grad_y = aux_grad_y + alpha * (grad_y - (Result_y)); Result_x = [diff(Result,1,2), Result(:,1,:) - Result(:,end,:)]; Result_y = [diff(Result,1,1); Result(1,:,:) - Result(end,:,:)]; if label == 1 Cost_cur = sum(abs(Result(:) - Img_ori(:))) + lambdasum(abs(Result_x(:)) + abs(Result_y(:))); else Cost_cur = sum(abs(Result(:) - Img_ori(:)).^2) + lambda*sum(abs(Result_x(:)) + abs(Result_y(:))); end Diff = abs(Cost_cur - Cost_prev); Cost_prev = Cost_cur; cost = [cost Cost_cur]; SNR_tmp = sqrt( sum( (Result(:)-double(Ori_Img(:))).^2 )) / sqrt(numel(Result)); SNR = [SNR SNR_tmp]; Iter = Iter + 1; end end哪里是通过求解带惩罚项的最小二乘问题来更新图像的

sample_rate, signal = wav.read('Male_Twenties.wav') pre_emphasis = 0.95 emphasized_signal = numpy.append(signal[0], signal[1:] - pre_emphasis * signal[:-1]) # 对信号进行短时分帧处理 frame_size = 0.025 # 设置帧长 frame_stride = 0.1 # 计算帧对应采样数(frame_length)以及步长对应采样数(frame_step) frame_length, frame_step = frame_size * sample_rate, frame_stride * sample_rate signal_length = len(emphasized_signal) # 信号总采样数 frame_length = int(round(frame_length)) # 帧采样数 frame_step = int(round(frame_step)) # num_frames为总帧数,确保我们至少有一个帧 num_frames = int(np.ceil(float(np.abs(signal_length - frame_length)) / frame_step)) pad_signal_length = num_frames * frame_step + frame_length z = np.zeros((pad_signal_length - signal_length)) # 填充信号以后确保所有的帧的采样数相等 pad_signal = np.append(emphasized_signal, z) indices = np.tile(np.arange(0, frame_length), (num_frames, 1)) + np.tile( np.arange(0, num_frames * frame_step, frame_step), (frame_length, 1)).T frames = pad_signal[indices.astype(np.int32, copy=False)] NFFT = 512 mag_frames = np.absolute(np.fft.rfft(frames, NFFT)) pow_frames = ((1.0 / NFFT) * ((mag_frames) ** 2)) log_pow_frames = logpowspec(pow_frames, NFFT, norm=1) # 保留语音的前3.5秒 # signal=signal[0:int(3.5*sample_rate)] # 信号预加重 # emphasized_signal=preemphasis(signal,coeff=0.95) # 显示信号 plt.plot(mag_frames) plt.title("Mag_Spectrum") plt.plot(emphasized_signal) plt.show() plt.plot(pow_frames) plt.title("Power_Spectrum") plt.show() plt.plot(log_pow_frames) plt.title("Log_Power_Spectrum") plt.show()中的三个图分别如何命名横纵坐标

解释:target = self.survey.source.target collection = self.survey.source.collection '''Mesh''' # Conductivity in S/m (or resistivity in Ohm m) background_conductivity = 1e-6 air_conductivity = 1e-8 # Permeability in H/m background_permeability = mu_0 air_permeability = mu_0 dh = 0.1 # base cell width dom_width = 20.0 # domain width # num. base cells nbc = 2 ** int(np.round(np.log(dom_width / dh) / np.log(2.0))) # Define the base mesh h = [(dh, nbc)] mesh = TreeMesh([h, h, h], x0="CCC") # Mesh refinement near transmitters and receivers mesh = refine_tree_xyz( mesh, collection.receiver_location, octree_levels=[2, 4], method="radial", finalize=False ) # Refine core mesh region xp, yp, zp = np.meshgrid([-1.5, 1.5], [-1.5, 1.5], [-6, -4]) xyz = np.c_[mkvc(xp), mkvc(yp), mkvc(zp)] mesh = refine_tree_xyz(mesh, xyz, octree_levels=[0, 6], method="box", finalize=False) mesh.finalize() '''Maps''' # Find cells that are active in the forward modeling (cells below surface) ind_active = mesh.gridCC[:, 2] < 0 # Define mapping from model to active cells active_sigma_map = maps.InjectActiveCells(mesh, ind_active, air_conductivity) active_mu_map = maps.InjectActiveCells(mesh, ind_active, air_permeability) # Define model. Models in SimPEG are vector arrays N = int(ind_active.sum()) model = np.kron(np.ones((N, 1)), np.c_[background_conductivity, background_permeability]) ind_cylinder = self.getIndicesCylinder( [target.position[0], target.position[1], target.position[2]], target.radius, target.length, [target.pitch, target.roll], mesh.gridCC ) ind_cylinder = ind_cylinder[ind_active] model[ind_cylinder, :] = np.c_[target.conductivity, target.permeability] # Create model vector and wires model = mkvc(model) wire_map = maps.Wires(("sigma", N), ("mu", N)) # Use combo maps to map from model to mesh sigma_map = active_sigma_map * wire_map.sigma mu_map = active_mu_map * wire_map.mu '''Simulation''' simulation = fdem.simulation.Simulation3DMagneticFluxDensity( mesh, survey=self.survey.survey, sigmaMap=sigma_map, muMap=mu_map, Solver=Solver ) '''Predict''' # Compute predicted data for your model. dpred = simulation.dpred(model) dpred = dpred * 1e9 # Data are organized by frequency, transmitter location, then by receiver. # We had nFreq transmitters and each transmitter had 2 receivers (real and # imaginary component). So first we will pick out the real and imaginary # data bx_real = dpred[0: len(dpred): 6] bx_imag = dpred[1: len(dpred): 6] bx_total = np.sqrt(np.square(bx_real) + np.square(bx_imag)) by_real = dpred[2: len(dpred): 6] by_imag = dpred[3: len(dpred): 6] by_total = np.sqrt(np.square(by_real) + np.square(by_imag)) bz_real = dpred[4: len(dpred): 6] bz_imag = dpred[5: len(dpred): 6] bz_total = np.sqrt(np.square(bz_real) + np.square(bz_imag)) mag_data = np.c_[mkvc(bx_total), mkvc(by_total), mkvc(bz_total)] if collection.SNR is not None: mag_data = self.mag_data_add_noise(mag_data, collection.SNR) data = np.c_[collection.receiver_location, mag_data] # data = (data, ) return data

最新推荐

recommend-type

图像去雾基于基于Matlab界面的(多方法对比,PSNR,信息熵,GUI界面).rar

MATLAB设计
recommend-type

c语言打字母游戏源码.zip

c语言打字母游戏源码
recommend-type

c语言做的一个任务管理器.zip

c语言做的一个任务管理器
recommend-type

JetBra-2021.1.x-重置.mp4.zip

JetBra-2021.1.x-重置.mp4.zip
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依