int get_raw_acc(int16_t* a) { memcpy(a, acc, sizeof(acc)); return 0; } int get_raw_gyo(int16_t* g) { memcpy(g, gyo, sizeof(gyo)); return 0; } int get_raw_mag(int16_t* m) { memcpy(m, mag, sizeof(mag)); return 0; } int get_eular(float* e) { memcpy(e, eular, sizeof(eular)); return 0; } int get_quat(float* q) { memcpy(q, quat, sizeof(quat)); return 0; } int get_id(uint8_t *user_id) { *user_id = id; return 0; }

时间: 2024-02-29 12:56:08 浏览: 23
这段代码定义了一些函数,用于获取传感器采集到的原始加速度(get_raw_acc)、原始陀螺仪数据(get_raw_gyo)、原始磁力计数据(get_raw_mag)、欧拉角(get_eular)、四元数(get_quat)以及ID(get_id)。这些函数的实现都是通过将相应的数据从全局变量acc、gyo、mag、eular、quat、id中复制到函数参数中,并返回一个状态码。可以看出,这些函数都是用于提供传感器数据的接口,供其他程序模块调用。
相关问题

FFmpeg int8_t*转 AVFrame 数据是yuv420完整代码

### 回答1: 以下是将 `int8_t*` 数据转换为 `AVFrame`(YUV420 格式)的完整代码示例。这里假设输入的数据是 `input_data`,其大小为 `input_size`,并且已经从文件或其他来源读取。 ``` #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdint.h> extern "C" { #include <libavcodec/avcodec.h> #include <libavutil/imgutils.h> } int main(int argc, char *argv[]) { AVCodec *codec; AVCodecContext *codec_ctx; AVFrame *frame; int ret, got_output; int width = 640; int height = 480; // Allocate input buffer and copy input data int8_t *input_data; int input_size = width * height * 3 / 2; input_data = (int8_t*) malloc(input_size); memcpy(input_data, <input data>, input_size); // Initialize codec and codec context codec = avcodec_find_decoder(AV_CODEC_ID_H264); if (!codec) { fprintf(stderr, "Codec not found\n"); exit(1); } codec_ctx = avcodec_alloc_context3(codec); if (!codec_ctx) { fprintf(stderr, "Could not allocate codec context\n"); exit(1); } if (avcodec_open2(codec_ctx, codec, NULL) < 0) { fprintf(stderr, "Could not open codec\n"); exit(1); } // Allocate frame and initialize its properties frame = av_frame_alloc(); if (!frame) { fprintf(stderr, "Could not allocate video frame\n"); exit(1); } frame->format = AV_PIX_FMT_YUV420P; frame->width = width; frame->height = height; ret = av_frame_get_buffer(frame, 32); if (ret < 0) { fprintf(stderr, "Could not allocate the video frame data\n"); exit(1); } // Decode input data and populate frame AVPacket pkt = { 0 }; av_init_packet(&pkt); pkt.data = input_data; pkt.size = input_size; ret = avcodec_decode_video2(codec_ctx, frame, &got_output, &pkt); if (ret < 0) { fprintf(stderr, "Error decoding video: %s\n", av_err2str(ret)); exit(1); } if (!got_output) { fprintf(stderr, "No frame decoded\n"); exit(1); } // Clean up av_packet_unref(&pkt); avcodec_close(codec_ctx); avcodec_free_context(&codec_ctx); av_frame_free(&frame); free(input_data); return 0; } ``` 在上面的代码中,我们首先分配了一个大小为 `input_size` 的输入缓冲区,并使用 `memcpy` 将输入数据复制到该缓冲区中。接下来,我们通过 `avcodec_find_decoder` 函数查找 H.264 解码器,并使用 `avcodec_alloc_context3` 和 `avcodec_open2` 函数初始化解码器上下文。然后,我们分配一个 AVFrame 结构体,并使用 `av_frame_get_buffer` 函数分配 YUV420P 格式的视频帧数据缓冲区。接着,我们使用 `avcodec_decode_video2 ### 回答2: 下面是一个用于将int8_t*(指向YUV420数据)转换为AVFrame(包含YUV420数据)的完整代码示例: ```c++ #include <iostream> #include <cstdint> extern "C" { #include <libavutil/frame.h> } AVFrame* int8_to_avframe(int8_t* data, int width, int height) { AVFrame* frame = av_frame_alloc(); if (!frame) { std::cout << "无法分配AVFrame" << std::endl; return nullptr; } frame->width = width; frame->height = height; frame->format = AV_PIX_FMT_YUV420P; int buffer_size = av_image_get_buffer_size(AV_PIX_FMT_YUV420P, width, height, 1); uint8_t* buffer = (uint8_t*)av_malloc(buffer_size); av_image_fill_arrays(frame->data, frame->linesize, buffer, AV_PIX_FMT_YUV420P, width, height, 1); int y_size = width * height; int u_size = y_size / 4; int v_size = y_size / 4; // 将int8_t*数据拷贝到AVFrame中的Y、U、V平面 memcpy(frame->data[0], data, y_size); memcpy(frame->data[1], data + y_size, u_size); memcpy(frame->data[2], data + y_size + u_size, v_size); return frame; } int main() { int8_t* data = new int8_t[width * height * 3 / 2]; // 假设data包含完整的YUV420数据 AVFrame* frame = int8_to_avframe(data, width, height); if (!frame) { std::cout << "无法转换int8_t*到AVFrame" << std::endl; } else { std::cout << "成功将int8_t*转换为AVFrame" << std::endl; } delete[] data; av_frame_free(&frame); return 0; } ``` 上述代码通过调用int8_to_avframe函数将int8_t*数据转换为AVFrame,并在main函数中进行了简单的测试。函数的实现包括以下步骤: 1. 分配AVFrame对象。 2. 设置AVFrame的width、height和format属性。 3. 使用av_malloc分配足够的内存以容纳YUV420数据,并将其填充到AVFrame的data和linesize数组中。 4. 计算Y、U、V平面的大小。 5. 将int8_t*数据按平面拷贝到AVFrame中。 6. 返回转换后的AVFrame对象。 请注意,本示例中的代码仅涵盖了转换过程,并假设data是包含完整的YUV420数据的int8_t*指针。在实际应用中,你可能需要根据自己的需求进行适当的修改和错误处理。 ### 回答3: 下面是一个将int8_t*数据转换为AVFrame的完整代码示例: ```c++ #include <iostream> #include <fstream> #include <string> #include <stdint.h> #include <stdlib.h> extern "C" { #include <libavformat/avformat.h> #include <libavcodec/avcodec.h> #include <libswscale/swscale.h> } int main() { // 需要转换的int8_t*数据 int8_t* inputData = new int8_t[1920 * 1080 * 3 / 2]; // 创建一个AVFrame结构 AVFrame* frame = av_frame_alloc(); if (!frame) { std::cerr << "无法分配AVFrame" << std::endl; return -1; } // 设置AVFrame的格式和尺寸 frame->format = AV_PIX_FMT_YUV420P; frame->width = 1920; frame->height = 1080; // 分配AVFrame的空间 int ret = av_frame_get_buffer(frame, 32); if (ret < 0) { std::cerr << "无法为AVFrame分配空间" << std::endl; av_frame_free(&frame); return -1; } // 将int8_t*数据复制到AVFrame中 AVPicture pict; avpicture_fill(&pict, inputData, AV_PIX_FMT_YUV420P, 1920, 1080); struct SwsContext* ctx = sws_getContext(1920, 1080, AV_PIX_FMT_YUV420P, 1920, 1080, AV_PIX_FMT_YUV420P, SWS_BILINEAR, NULL, NULL, NULL); sws_scale(ctx, pict.data, pict.linesize, 0, 1080, frame->data, frame->linesize); sws_freeContext(ctx); // 清理内存 delete[] inputData; // 打印转换后AVFrame的属性 std::cout << "转换后的AVFrame属性:" << std::endl; std::cout << "格式:" << av_get_pix_fmt_name((AVPixelFormat)frame->format) << std::endl; std::cout << "宽度:" << frame->width << std::endl; std::cout << "高度:" << frame->height << std::endl; std::cout << "数据大小:" << av_image_get_buffer_size((AVPixelFormat)frame->format, frame->width, frame->height, 1) << std::endl; // 释放AVFrame av_frame_free(&frame); return 0; } ``` 这个代码片段创建了一个AVFrame,设置其格式为YUV420P,尺寸为1920x1080,并分配了足够的空间。然后,使用`sws_getContext()`和`sws_scale()`函数将int8_t*数据复制到AVFrame中。最后,打印了转换后AVFrame的属性并释放了内存。 请注意,此示例仅用于演示目的,可能需要根据实际需求进行修改。还需要包含适当的头文件和链接适当的库文件。

char* m_pDataBuffer 转换 int32_t 打印的数据不对

这可能是由于数据类型不匹配导致的问题。char* 类型表示一个字符数组,而 int32_t 类型表示一个32位整数。如果你直接将 char* 类型转换为 int32_t 类型并打印输出,可能会得到不正确的结果。这是因为字符数组的每个元素只包含一个字节,而 int32_t 类型需要4个字节来存储。因此,你需要将 char* 类型的数据按照正确的字节顺序转换为 int32_t 类型,然后再进行打印输出。具体的实现方法可以参考以下代码: ```c++ char* pDataBuffer = ...; // 假设这是你的 char* 类型的数据 int32_t nData = 0; memcpy(&nData, pDataBuffer, sizeof(int32_t)); printf("%d", nData); ``` 这里使用了 memcpy 函数将字符数组的前4个字节复制到一个 int32_t 类型的变量中,然后再将它打印输出。这样就能够正确地输出 int32_t 类型的数据了。

相关推荐

最新推荐

recommend-type

安全函数strcpy_s、strncpy_s、snprintf_s、memcpy_s

用于了解安全函数strcpy_s、strncpy_s、snprintf_s、memcpy_s
recommend-type

基于PHP开发的一套开源社交娱乐直播系统,包含IOS、Android和PC Web端,让你零成本拥有自己的直播平台。.zip

该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

电容式触摸按键设计参考

"电容式触摸按键设计参考 - 触摸感应按键设计指南" 本文档是Infineon Technologies的Application Note AN64846,主要针对电容式触摸感应(CAPSENSE™)技术,旨在为初次接触CAPSENSE™解决方案的硬件设计师提供指导。文档覆盖了从基础技术理解到实际设计考虑的多个方面,包括电路图设计、布局以及电磁干扰(EMI)的管理。此外,它还帮助用户选择适合自己应用的合适设备,并提供了CAPSENSE™设计的相关资源。 文档的目标受众是使用或对使用CAPSENSE™设备感兴趣的用户。CAPSENSE™技术是一种基于电容原理的触控技术,通过检测人体与传感器间的电容变化来识别触摸事件,常用于无物理按键的现代电子设备中,如智能手机、家电和工业控制面板。 在文档中,读者将了解到CAPSENSE™技术的基本工作原理,以及在设计过程中需要注意的关键因素。例如,设计时要考虑传感器的灵敏度、噪声抑制、抗干扰能力,以及如何优化电路布局以减少EMI的影响。同时,文档还涵盖了器件选择的指导,帮助用户根据应用需求挑选合适的CAPSENSE™芯片。 此外,为了辅助设计,Infineon提供了专门针对CAPSENSE™设备家族的设计指南,这些指南通常包含更详细的技术规格、设计实例和实用工具。对于寻求代码示例的开发者,可以通过Infineon的在线代码示例网页获取不断更新的PSoC™代码库,也可以通过视频培训库深入学习。 文档的目录通常会包含各个主题的章节,如理论介绍、设计流程、器件选型、硬件实施、软件配置以及故障排查等,这些章节将逐步引导读者完成一个完整的CAPSENSE™触摸按键设计项目。 通过这份指南,工程师不仅可以掌握CAPSENSE™技术的基础,还能获得实践经验,从而有效地开发出稳定、可靠的触摸感应按键系统。对于那些希望提升产品用户体验,采用先进触控技术的设计师来说,这是一份非常有价值的参考资料。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB函数调用中的调试技巧大揭秘,快速定位并解决函数调用问题

![MATLAB函数调用中的调试技巧大揭秘,快速定位并解决函数调用问题](https://ucc.alicdn.com/pic/developer-ecology/ovk2h427k2sfg_f0d4104ac212436a93f2cc1524c4512e.png?x-oss-process=image/resize,s_500,m_lfit) # 1. MATLAB函数调用的基本原理** MATLAB函数调用是通过`function`关键字定义的,其语法为: ```matlab function [output1, output2, ..., outputN] = function_na
recommend-type

LDMIA r0!,{r4 - r11}

LDMIA是ARM汇编语言中的一条指令,用于从内存中加载多个寄存器的值。具体来说,LDMIA r0!,{r4 r11}的意思是从内存地址r0开始,连续加载r4到r11这8个寄存器的值[^1]。 下面是一个示例代码,演示了如何使用LDMIA指令加载寄器的值: ```assembly LDMIA r0!, {r4-r11} ;从内存地址r0开始,连续加载r4到r11这8个寄存器的值 ``` 在这个示例中,LDMIA指令将会从内存地址r0开始,依次将内存中的值加载到r4、r5、r6、r7、r8、r9、r10和r11这8个寄存器中。
recommend-type

西门子MES-系统规划建议书(共83页).docx

"西门子MES系统规划建议书是一份详细的文档,涵盖了西门子在MES(制造执行系统)领域的专业见解和规划建议。文档由西门子工业自动化业务部旗下的SISW(西门子工业软件)提供,该部门是全球PLM(产品生命周期管理)软件和SIMATIC IT软件的主要供应商。文档可能包含了 MES系统如何连接企业级管理系统与生产过程,以及如何优化生产过程中的各项活动。此外,文档还提及了西门子工业业务领域的概况,强调其在环保技术和工业解决方案方面的领导地位。" 西门子MES系统是工业自动化的重要组成部分,它扮演着生产过程管理和优化的角色。通过集成的解决方案,MES能够提供实时的生产信息,确保制造流程的高效性和透明度。MES系统规划建议书可能会涉及以下几个关键知识点: 1. **MES系统概述**:MES系统连接ERP(企业资源计划)和底层控制系统,提供生产订单管理、设备监控、质量控制、物料跟踪等功能,以确保制造过程的精益化。 2. **西门子SIMATIC IT**:作为西门子的MES平台,SIMATIC IT提供了广泛的模块化功能,适应不同行业的生产需求,支持离散制造业、流程工业以及混合型生产环境。 3. **产品生命周期管理(PLM)**:PLM软件用于管理产品的全生命周期,从概念设计到报废,强调协作和创新。SISW提供的PLM解决方案可能包括CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAE(计算机辅助工程)等工具。 4. **工业自动化**:西门子工业自动化业务部提供自动化系统、控制器和软件,提升制造业的效率和灵活性,包括生产线自动化、过程自动化和系统整体解决方案。 5. **全球市场表现**:SISW在全球范围内拥有大量客户,包括许多世界500强企业,表明其解决方案在业界的广泛应用和认可。 6. **中国及亚洲市场**:SISW在中国和亚洲其他新兴市场具有领先地位,特别是在CAD领域,反映了其在这些地区的重要影响力。 7. **案例研究**:文档可能包含实际案例,如通用汽车的全球产品开发项目,展示SISW技术在大型复杂项目中的应用能力。 这份建议书不仅对理解西门子MES系统有重要作用,也为企业在选择和实施MES系统时提供了策略性指导,有助于企业规划和优化其生产流程,实现更高效的制造业运营。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

掌握MATLAB函数调用性能优化秘籍,提升函数调用效率

![掌握MATLAB函数调用性能优化秘籍,提升函数调用效率](https://www.iar.com/siteassets/china/china-learn-programming-complier-5.png) # 1. MATLAB函数调用性能优化概述 MATLAB函数调用性能优化是提高MATLAB应用程序性能的关键。本文将全面介绍MATLAB函数调用性能优化的原理、方法和实践,帮助读者深入理解和优化MATLAB函数调用,从而提升应用程序性能。 本概述将涵盖以下内容: * MATLAB函数调用性能优化的重要性 * MATLAB函数调用性能优化的目标和范围 * MATLAB函数调用性
recommend-type

MMCV Normalize 调用方法

MMCV(OpenMMLab Computer Vision Library)是一个基于PyTorch的开源计算机视觉库,提供了丰富的计算机视觉任务的模型和工具。其中,MMCV Normalize是MMCV库中的一个函数,用于对图像进行归一化处理。 调用MMCV Normalize的方法如下: 1. 首先,导入相关的库和函数: ```python import mmcv from mmcv.runner import load_checkpoint from mmcv.parallel import collate, scatter from mmcv.runner import wrap