用MATLAB实现牛顿插值法来计算函数1/(1+x^2),完整代码
时间: 2024-10-25 22:05:12 浏览: 119
在MATLAB中,可以使用牛顿插值法(Newton's Interpolation)来近似复杂函数。下面是一个简单的示例,展示如何使用这种方法计算函数1/(1+x^2)。牛顿插值法基于多项式逼近,但在这个例子中,由于我们无法直接构建一个多项式来精确表示该分段光滑函数,我们可以使用数值方法,例如`interp1`函数,它更适用于连续函数。
```matlab
% 定义插值点 x 和对应的函数值 y (这里是1/(1+x^2))
x = -10:0.01:10; % 选择一些均匀的x值,包括负无穷和正无穷
y = 1 ./ (1 + x .^ 2); % 计算对应函数值
% 使用interp1进行插值
f_interpolated = interp1(x, y, 'spline'); % 使用Spline插值,因为它是连续且光滑的
% 检查插值结果
x_new = linspace(min(x), max(x), 1000); % 新的x值用于检查插值精度
y_new = f_interpolated(x_new); % 在新点上应用插值
% 绘制原始函数和插值后的曲线
plot(x, y, 'o', 'MarkerSize', 4, 'LineWidth', 1, 'DisplayName', 'Original Data')
hold on
plot(x_new, y_new, 'LineWidth', 2, 'DisplayName', 'Interpolated Function')
xlabel('x')
ylabel('1/(1+x^2)')
title('Interpolating the Function 1/(1+x^2) using Newton\'s Method (Spline)')
legend show
%
阅读全文
相关推荐


















