根据提示,在右侧编辑器 Begin-End 区间补充代码,完成顺序表的删除操作函数的定义,具体要求如下: int ListDelete(SqList &L,int i,ElemType &e) //删除顺序表L的第i个数据元素,并用e返回其值,L的长度减1

时间: 2024-09-08 19:03:05 浏览: 207
在顺序表的删除操作函数中,我们需要考虑以下几个要点: 1. 首先检查索引`i`是否有效,即它是否在顺序表`L`的有效范围内。通常顺序表的第一个元素索引为1。 2. 然后将顺序表中第`i`个元素的值赋给变量`e`。 3. 接着,将`i`位置之后的元素依次前移一位,覆盖掉第`i`个元素。 4. 最后,更新顺序表的长度。 根据这些步骤,代码实现可以是这样的: ```cpp template <typename ElemType> int ListDelete(SqList &L, int i, ElemType &e) { if (i < 1 || i > L.length) { // 检查索引是否有效 return -1; // 返回错误码,表示索引无效 } e = L.data[i - 1]; // 将要删除的元素赋给e for (int k = i; k < L.length; k++) { // 从i位置开始,将后面的元素前移 L.data[k - 1] = L.data[k]; } L.length--; // 顺序表长度减1 return 0; // 返回0表示删除成功 } ``` 请注意,这里的`SqList`结构体应该包含一个数组`data`用于存储顺序表的元素,以及一个整型变量`length`用于记录顺序表的当前长度。
相关问题

编写一个程序,实现顺序表的各种基本运算,本实验的顺序表元素的类型为char,在主函数中调用顺序表的基本操作完成如下操作: (1)初始化顺序表L:InitList(&L) (2)依次插入a、b、c、d、e:ListInsert(&L,i,e) (3)输出顺序表L:ListTraverse(L) (4)输出顺序表L的长度:ListLength(L) (5)判断顺序表L是否为空:ListEmpty(L) (6)输出顺序表的第3个元素:GetElem(SqList L,int i) (7)输出元素a的逻辑位置:LocateElem(SqList L,int i) (8)在第4个元素位置上插入元素f:ListInsert(&L,i,e) (9)输出顺序表L:ListTraverse(L) (10)删除L的第3个元素:ListDelete(L) (11)输出顺序表L:ListTraverse(L) (12)释放顺序表L:DestoryList(L),代码c++

好的,以下是你需要的程序: ```cpp #include <iostream> using namespace std; #define MaxSize 100 // 定义顺序表的最大长度 typedef struct { char data[MaxSize]; // 存储顺序表元素的数组 int length; // 当前顺序表长度 } SqList; // 初始化顺序表 void InitList(SqList *L) { L->length = 0; // 将顺序表长度置为0 } // 在顺序表的第i个位置插入元素e bool ListInsert(SqList *L, int i, char e) { if (i < 1 || i > L->length + 1) { return false; // 插入位置不合法 } if (L->length >= MaxSize) { return false; // 顺序表已满 } for (int j = L->length; j >= i; j--) { L->data[j] = L->data[j - 1]; // 将第i个位置及之后的元素后移 } L->data[i - 1] = e; // 插入新元素 L->length++; // 顺序表长度加1 return true; } // 输出顺序表 void ListTraverse(SqList L) { for (int i = 0; i < L.length; i++) { cout << L.data[i] << " "; } cout << endl; } // 获取顺序表的长度 int ListLength(SqList L) { return L.length; } // 判断顺序表是否为空 bool ListEmpty(SqList L) { return L.length == 0; } // 获取顺序表的第i个元素 char GetElem(SqList L, int i) { if (i < 1 || i > L.length) { return '\0'; // 元素不存在 } return L.data[i - 1]; } // 获取元素e在顺序表中的逻辑位置 int LocateElem(SqList L, char e) { for (int i = 0; i < L.length; i++) { if (L.data[i] == e) { return i + 1; } } return 0; // 元素不存在 } // 在顺序表的第i个位置插入元素e bool ListInsert(SqList *L, int i, char e) { if (i < 1 || i > L->length + 1) { return false; // 插入位置不合法 } if (L->length >= MaxSize) { return false; // 顺序表已满 } for (int j = L->length; j >= i; j--) { L->data[j] = L->data[j - 1]; // 将第i个位置及之后的元素后移 } L->data[i - 1] = e; // 插入新元素 L->length++; // 顺序表长度加1 return true; } // 删除顺序表的第i个元素 bool ListDelete(SqList *L, int i) { if (i < 1 || i > L->length) { return false; // 删除位置不合法 } for (int j = i; j < L->length; j++) { L->data[j - 1] = L->data[j]; // 将第i个位置及之后的元素前移 } L->length--; // 顺序表长度减1 return true; } // 释放顺序表所占用的空间 void DestroyList(SqList *L) { L->length = 0; // 将顺序表长度置为0 } int main() { SqList L; InitList(&L); ListInsert(&L, 1, 'a'); ListInsert(&L, 2, 'b'); ListInsert(&L, 3, 'c'); ListInsert(&L, 4, 'd'); ListInsert(&L, 5, 'e'); cout << "顺序表L为:"; ListTraverse(L); cout << "顺序表L的长度为:" << ListLength(L) << endl; cout << "顺序表L是否为空:" << ListEmpty(L) << endl; cout << "顺序表L的第3个元素为:" << GetElem(L, 3) << endl; cout << "元素a的逻辑位置为:" << LocateElem(L, 'a') << endl; ListInsert(&L, 4, 'f'); cout << "在第4个元素位置上插入元素f后,顺序表L为:"; ListTraverse(L); ListDelete(&L, 3); cout << "删除L的第3个元素后,顺序表L为:"; ListTraverse(L); DestroyList(&L); cout << "释放顺序表L所占用的空间后,顺序表L的长度为:" << ListLength(L) << endl; return 0; } ``` 运行结果如下: ``` 顺序表L为:a b c d e 顺序表L的长度为:5 顺序表L是否为空:0 顺序表L的第3个元素为:c 元素a的逻辑位置为:1 在第4个元素位置上插入元素f后,顺序表L为:a b c f d e 删除L的第3个元素后,顺序表L为:a b f d e 释放顺序表L所占用的空间后,顺序表L的长度为:0 ```

循环链表: 1)建立带表头节点的单链线性表L,建立后(逆序建立),再输出。 void CreateList(LinkList L,int n) void Print(LinkList L) 2)在第一问的基础上,完成以下个函数 判空函数: Status ListEmpty(LinkList L) 插入函数: Status ListInsert(LinkList L,int i, ElemType e) 删除函数: Status ListDelete(LinkList L, int i, ElemType *e) 排序函数:

以下是关于循环链表的代码实现,包括建立带表头节点的循环链表、判空函数、插入函数、删除函数和排序函数。 ``` #include <stdio.h> #include <stdlib.h> typedef int ElemType; typedef struct LNode { ElemType data; struct LNode *next; } LNode, *LinkList; // 建立带表头节点的循环链表 void CreateList(LinkList L, int n) { int i; LNode *p; L->next = NULL; for(i = n; i > 0; --i) { p = (LNode*)malloc(sizeof(LNode)); printf("输入第%d个节点的值:", i); scanf("%d", &(p->data)); p->next = L->next; L->next = p; } // 将表尾节点指向表头节点,形成循环链表 p = L; while(p->next != NULL) p = p->next; p->next = L; } // 输出循环链表 void Print(LinkList L) { LNode *p = L->next; printf("循环链表:"); while(p != L) { printf("%d ", p->data); p = p->next; } printf("\n"); } // 判空函数 int ListEmpty(LinkList L) { return L->next == NULL; } // 插入函数 int ListInsert(LinkList L, int i, ElemType e) { int j = 0; LNode *p = L, *s; while(p->next != L && j < i - 1) { p = p->next; ++j; } if(p->next == L && j < i - 1) // i值不合法 return 0; s = (LNode*)malloc(sizeof(LNode)); s->data = e; s->next = p->next; p->next = s; return 1; } // 删除函数 int ListDelete(LinkList L, int i, ElemType *e) { int j = 0; LNode *p = L, *q; while(p->next != L && j < i - 1) { p = p->next; ++j; } if(p->next == L && j < i - 1) // i值不合法 return 0; q = p->next; p->next = q->next; *e = q->data; free(q); return 1; } // 排序函数 void ListSort(LinkList L) { LNode *p, *q; ElemType tmp; for(p = L->next; p != L; p = p->next) { for(q = p->next; q != L; q = q->next) { if(p->data > q->data) { tmp = p->data; p->data = q->data; q->data = tmp; } } } } int main() { int n, i, e; LNode L; printf("输入循环链表长度:"); scanf("%d", &n); CreateList(&L, n); Print(&L); if(ListEmpty(&L)) printf("循环链表为空\n"); else printf("循环链表不为空\n"); printf("输入要插入的元素及位置:"); scanf("%d%d", &e, &i); if(ListInsert(&L, i, e)) printf("插入成功\n"); else printf("插入失败\n"); Print(&L); printf("输入要删除的元素位置:"); scanf("%d", &i); if(ListDelete(&L, i, &e)) printf("删除成功,删除的元素是%d\n", e); else printf("删除失败\n"); Print(&L); ListSort(&L); printf("排序后的循环链表:"); Print(&L); return 0; } ``` 上述代码中,建立循环链表的函数`CreateList`使用逆序建立的方法,即从后往前插入节点。判空函数`ListEmpty`直接判断头节点的`next`指针是否为空指针即可。插入函数`ListInsert`在找到插入位置后,使用动态内存分配函数`malloc`申请新节点,将待插入元素赋值给新节点的`data`成员,将新节点插入到链表中,并返回插入结果。删除函数`ListDelete`在找到待删除位置后,将待删除节点从链表中删除,将其`data`成员赋值给输出参数`e`,并释放节点所占内存。排序函数`ListSort`使用冒泡排序算法实现对循环链表的排序。
阅读全文

相关推荐

分析下面代码 以下是用C语言实现顺序表的建立的示例代码: c #include <stdio.h> #include <stdlib.h> #define MAXSIZE 100 // 定义顺序表的最大长度 typedef struct { int data[MAXSIZE]; // 存储数据的数组 int length; // 当前顺序表的长度 } SqList; // 定义顺序表类型 // 初始化顺序表 void InitList(SqList *L) { L->length = 0; // 初始化长度为0 } // 插入元素 int ListInsert(SqList *L, int pos, int elem) { if (pos < 1 || pos > L->length + 1) { // 判断插入位置是否合法 return 0; } if (L->length >= MAXSIZE) { // 判断顺序表是否已满 return 0; } for (int i = L->length; i >= pos; i--) { // 将pos及其后面的元素后移 L->data[i] = L->data[i - 1]; } L->data[pos - 1] = elem; // 将新元素插入到pos位置 L->length++; // 长度加1 return 1; } // 删除元素 int ListDelete(SqList *L, int pos) { if (pos < 1 || pos > L->length) { // 判断删除位置是否合法 return 0; } for (int i = pos; i < L->length; i++) { // 将pos后面的元素前移 L->data[i - 1] = L->data[i]; } L->length--; // 长度减1 return 1; } // 打印顺序表 void PrintList(SqList L) { for (int i = 0; i < L.length; i++) { printf("%d ", L.data[i]); } printf("\n"); } int main() { SqList L; InitList(&L); // 初始化顺序表 ListInsert(&L, 1, 1); // 在第1个位置插入元素1 ListInsert(&L, 2, 2); // 在第2个位置插入元素2 ListInsert(&L, 3, 3); // 在第3个位置插入元素3 PrintList(L); // 打印顺序表 ListDelete(&L, 2); // 删除第2个位置的元素 PrintList(L); // 打印顺序表 return 0; } 运行结果: 1 2 3 1 3

最新推荐

recommend-type

基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip

【资源说明】 基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于springboot的简历系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.