给出以下每句的含义 if (line): rho_err = abs(line.rho())-img.width()/2 if line.theta()>90: theta_err = line.theta()-180 else: theta_err = line.theta() #直角坐标调整 img.draw_line(line.line(), color = 127) #画出直线 #print(rho_err,line.magnitude(),rho_err) if line.magnitude()>8: #if -40<b_err<40 and -30<t_err<30: #rho_pid直线左右偏移的距离,theta_err角度偏移

时间: 2024-04-17 22:24:05 浏览: 19
这段代码是在处理检测到的直线时使用的。下面是每句代码的含义: 1. `if (line):`:检查是否检测到了直线。如果检测到了直线,则执行下面的代码。 2. `rho_err = abs(line.rho())-img.width()/2`:计算直线与图像中心的偏移距离。`line.rho()`返回直线到原点的距离,`img.width()`返回图像的宽度。 3. `if line.theta()>90:`:检查直线的角度是否大于90度。 4. `theta_err = line.theta()-180`:如果直线角度大于90度,计算直线角度与180度的差值。这是为了将角度转换到-90度至90度之间的范围。 5. `else:`:如果直线的角度不大于90度,则执行下面的代码。 6. `theta_err = line.theta()`:直线角度小于等于90度,直接使用原始角度。 7. `img.draw_line(line.line(), color = 127)`:在图像上画出检测到的直线。`line.line()`返回直线的起点和终点坐标。 8. `if line.magnitude()>8:`:检查直线的长度是否大于8个像素。`line.magnitude()`返回直线的长度。 需要注意的是,代码中有一些注释被注释掉了,这些注释中包含了一些额外的逻辑,比如判断直线的偏移范围等。这些注释可以根据实际需求进行解除注释和调整。
相关问题

解释一下while(True): clock.tick() img = sensor.snapshot().binary([THRESHOLD]) line = img.get_regression([(100,100)], robust = True) if (line): rho_err = abs(line.rho())-img.width()/2 if line.theta()>90: theta_err = line.theta()-180 else: theta_err = line.theta() img.draw_line(line.line(), color = 127) print(rho_err,line.magnitude(),rho_err) if line.magnitude()>8: rho_output = rho_pid.get_pid(rho_err,1) theta_output = theta_pid.get_pid(theta_err,1) output = rho_output + theta_output if(output<0): output = abs(output) + 100 OUTPUT = str(round(output)) uart.write(OUTPUT) uart.write('\r\n') print(OUTPUT)

这段代码是一个循环,不断执行以下操作: 1. 使用 `clock.tick()` 函数来测量循环的执行时间。 2. 使用 `sensor.snapshot()` 函数获取传感器拍摄的图像,并使用 `binary()` 方法将图像转换为二值图像,根据给定的阈值 `THRESHOLD` 进行二值化处理。 3. 使用 `get_regression()` 方法对图像进行线性回归,以检测图像中的直线。传入参数 `[(100,100)]` 表示检测直线的最小长度和间隔。 4. 如果检测到了直线(即 `line` 不为 `None`),则进行以下操作: a. 计算直线距离图像中心的偏差 `rho_err`,即直线的 rho 值减去图像宽度的一半。 b. 根据直线的角度 `line.theta()` 判断是否大于 90 度,如果是,则计算角度偏差 `theta_err` 为直线角度减去 180 度,否则直接使用直线角度作为偏差。 c. 使用 `draw_line()` 方法在图像上绘制检测到的直线。 d. 打印输出 `rho_err`、`line.magnitude()` 和 `rho_err`。 e. 如果直线长度大于 8(即 `line.magnitude()` 大于 8),则进行以下操作: - 使用 PID 控制器 `rho_pid` 计算 rho 偏差的输出 `rho_output`。 - 使用 PID 控制器 `theta_pid` 计算角度偏差的输出 `theta_output`。 - 将 `rho_output` 和 `theta_output` 相加得到最终输出 `output`。 - 如果 `output` 小于 0,将其取绝对值并加上 100,得到修正后的输出。 - 将修正后的输出转换为字符串 `OUTPUT`。 - 使用串口 `uart` 发送字符串 `OUTPUT` 到外部设备,并添加回车换行符。 - 打印输出 `OUTPUT`。 这段代码的主要功能是通过图像处理和 PID 控制器来检测并跟踪图像中的直线,并将控制信号通过串口发送给外部设备。

rho_err = abs(line.rho())-img.width()/2

在 OpenMV 中,`line.rho()` 方法返回的是直线的极径值。如果要计算直线极径与图像宽度一半之间的差值,你可以使用以下公式: ```python rho_err = abs(line.rho()) - img.width() / 2 ``` 其中,`abs(line.rho())` 表示直线极径的绝对值,`img.width()` 表示图像的宽度。通过这个计算,你可以得到直线极径与图像宽度一半之间的差值,即 `rho_err` 的值。

相关推荐

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。