用python实现mRMR算法
时间: 2023-11-10 19:57:40 浏览: 107
mRMR.7z
以下是使用Python实现mRMR(最大相关最小冗余)算法的示例代码:
```python
import numpy as np
from sklearn.feature_selection import mutual_info_classif
# 计算互信息
def compute_mutual_info(X, y):
return mutual_info_classif(X, y)
# 计算特征与类别之间的相关性
def compute_feature_class_corr(X, y):
num_features = X.shape[1]
corr = np.zeros(num_features)
for feature_idx in range(num_features):
feature = X[:, feature_idx]
corr[feature_idx] = np.abs(np.corrcoef(feature, y)[0, 1])
return corr
# 计算特征与特征之间的冗余度
def compute_feature_feature_redundancy(X):
num_features = X.shape[1]
redundancy = np.zeros((num_features, num_features))
for i in range(num_features):
for j in range(num_features):
if i != j:
feature_1 = X[:, i]
feature_2 = X[:, j]
redundancy[i, j] = np.abs(np.corrcoef(feature_1, feature_2)[0, 1])
return redundancy
# 计算mRMR得分
def compute_mrmr_score(X, y):
mi = compute_mutual_info(X, y)
corr = compute_feature_class_corr(X, y)
redundancy = compute_feature_feature_redundancy(X)
num_features = X.shape[1]
score = np.zeros(num_features)
for i in range(num_features):
score[i] = mi[i] - (1 / (num_features - 1)) * np.sum(redundancy[i, :]) + corr[i]
return score
# 选择具有最大mRMR得分的特征
def select_features(X, y, k):
scores = compute_mrmr_score(X, y)
selected_features = np.argsort(scores)[::-1][:k]
return selected_features
# 示例用法
X = np.random.rand(100, 10) # 特征矩阵,100个样本,10个特征
y = np.random.randint(0, 2, 100) # 类别标签,二分类问题
k = 5 # 选择的特征数量
selected_features = select_features(X, y, k)
print(selected_features)
```
这个示例代码使用scikit-learn库中的`mutual_info_classif`函数计算特征与类别之间的互信息,然后计算特征与类别之间的相关性和特征与特征之间的冗余度。最后,根据mRMR得分选择具有最大得分的k个特征。你可以根据自己的数据和需求进行调整和修改。
阅读全文