mrmr算法python代码
时间: 2024-03-28 12:33:53 浏览: 183
MRMR算法(最大相关最小冗余)是一种特征选择算法,用于从给定的特征集中选择最具有代表性和相关性的特征子集。下面是一个简单的MRMR算法的Python代码示例:
```python
import numpy as np
from sklearn.feature_selection import mutual_info_regression
def mrmr(X, y, k):
n_features = X.shape[1]
selected_features = []
remaining_features = list(range(n_features))
# 计算第一个特征与目标变量的互信息
mi = mutual_info_regression(X[:, [0]], y)[0]
selected_features.append(0)
remaining_features.remove(0)
for _ in range(k-1):
max_mrmr = -np.inf
best_feature = None
for feature in remaining_features:
# 计算当前特征与已选特征的互信息
mrmr_score = mi - mutual_info_regression(X[:, [feature]], X[:, selected_features]).sum()
if mrmr_score > max_mrmr:
max_mrmr = mrmr_score
best_feature = feature
# 更新互信息
mi -= mutual_info_regression(X[:, [best_feature]], y)[0]
selected_features.append(best_feature)
remaining_features.remove(best_feature)
return selected_features
# 示例用法
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = np.array([10, 20, 30])
k = 2
selected_features = mrmr(X, y, k)
print("Selected features:", selected_features)
```
这段代码实现了一个简单的MRMR算法,输入参数包括特征矩阵X、目标变量y和要选择的特征数量k。输出为选择的特征索引列表。在示例中,特征矩阵X是一个3x3的矩阵,目标变量y是一个长度为3的向量,要选择2个特征。运行结果会输出选择的特征索引列表。
阅读全文