MRMR算法 python
时间: 2023-07-10 16:06:43 浏览: 125
python编写MR
MRMR (最大相关最小冗余) 算法是一种特征选择算法,它可以在高维数据中选择最具代表性的特征。下面是一个使用Python实现MRMR算法的示例代码:
```python
import numpy as np
def mrmr(X, y, n_selected_features):
"""
MRMR Algorithm for feature selection
X: array-like, shape (n_samples, n_features)
input data
y: array-like, shape (n_samples,)
target variable
n_selected_features: int
number of selected features
"""
# Initialize the list of selected features and the list of remaining features
selected_features = []
remaining_features = list(range(X.shape[1]))
# Calculate the mutual information between each feature and the target variable
mi = mutual_info_classif(X, y)
# Select the feature with the highest mutual information with the target variable
best_feature_idx = np.argmax(mi)
selected_features.append(best_feature_idx)
remaining_features.remove(best_feature_idx)
# Select the remaining features using the MRMR criterion
while len(selected_features) < n_selected_features:
mrmr_score = []
for feature_idx in remaining_features:
# Calculate the relevance between the feature and the target variable
relevance = mi[feature_idx]
# Calculate the redundancy between the feature and the selected features
redundancy = np.mean([mutual_info_score(X[:, feature_idx], X[:, selected_feature]) for selected_feature in selected_features])
# Calculate the MRMR criterion
mrmr_score.append(relevance - redundancy)
# Select the feature with the highest MRMR score
best_feature_idx = remaining_features[np.argmax(mrmr_score)]
selected_features.append(best_feature_idx)
remaining_features.remove(best_feature_idx)
return selected_features
```
在上面的代码中,`X`是输入数据,`y`是目标变量,`n_selected_features`是要选择的特征数量。该代码使用`mutual_info_classif`和`mutual_info_score`函数计算特征与目标变量之间的互信息和特征之间的互信息,并使用MRMR准则选择最具代表性的特征。
阅读全文