mRMR算法Python实现
时间: 2023-11-05 21:49:24 浏览: 222
mRMR(最大相关最小冗余)算法是一种特征选择方法,它可以用于选择最具信息量的特征子集。下面是一个简单的mRMR算法的Python实现示例:
```python
import numpy as np
from sklearn.feature_selection import mutual_info_regression
def mrmr(X, y, n_features):
mrmr_features = []
remaining_features = list(range(X.shape[1]))
# 计算第一个特征
mi = mutual_info_regression(X[:, remaining_features], y)
best_feature_idx = np.argmax(mi)
mrmr_features.append(remaining_features[best_feature_idx])
remaining_features.remove(remaining_features[best_feature_idx])
# 选择剩余特征
for i in range(1, n_features):
mi_matrix = []
for feature in remaining_features:
selected_features = mrmr_features + [feature]
mi = mutual_info_regression(X[:, selected_features], y)
mi_matrix.append(mi)
mi_matrix = np.array(mi_matrix)
redundancy = np.corrcoef(mi_matrix.T)
redundancy = np.abs(redundancy - np.eye(redundancy.shape[0]))
redundancy_avg = np.mean(redundancy, axis=0)
redundancy_idx = np.argmax(redundancy_avg)
best_feature_idx = remaining_features[redundancy_idx]
mrmr_features.append(best_feature_idx)
remaining_features.remove(best_feature_idx)
return mrmr_features
# 示例用法
X = np.random.rand(100, 10) # 特征矩阵
y = np.random.rand(100) # 目标向量
n_features = 5 # 选择的特征数量
selected_features = mrmr(X, y, n_features)
print("Selected features:", selected_features)
```
这个示例使用了`numpy`和`scikit-learn`库来实现mRMR算法。首先,通过`mutual_info_regression`函数计算特征与目标之间的互信息。然后,根据互信息选择第一个特征。接下来,在剩余特征中选择与已选择特征相关性最大且与已选择特征冗余最小的特征,重复这个过程直到选择了指定数量的特征。最后,返回所选特征的索引。
请注意,这只是一个基本的mRMR算法实现示例,具体的实现可能因数据集和需求而异。你可以根据自己的需求进行调整和改进。
阅读全文