讲解cv2.cvtColor函数

时间: 2024-06-16 21:04:54 浏览: 16
cv2.cvtColor函数是OpenCV库中的一个函数,用于将图像从一个颜色空间转换为另一个颜色空间。它的语法如下: ```python cv2.cvtColor(src, code[, dst[, dstCn]]) ``` 其中,参数说明如下: - `src`:要转换的输入图像。 - `code`:指定转换的类型,可以是一个整数值或者一个字符串。常见的转换类型包括: - `cv2.COLOR_BGR2GRAY`:将BGR彩色图像转换为灰度图像。 - `cv2.COLOR_BGR2RGB`:将BGR彩色图像转换为RGB彩色图像。 - `cv2.COLOR_BGR2HSV`:将BGR彩色图像转换为HSV颜色空间。 - 其他更多的转换类型可以参考OpenCV官方文档。 - `dst`:可选参数,输出图像,与输入图像具有相同的大小和深度。 - `dstCn`:可选参数,输出图像的通道数。 该函数会返回转换后的图像。
相关问题

对下面的代码进行讲解 from PIL import Image # import pytesseract import requests import uuid import time import cv2 def get_verify_code(uuid): url = f'https://dm.zjleiming.cn:9898/user/captcha?uuid={uuid}' response = requests.get(url) return response.content def main(): uuid = (str(time.time())) image = get_verify_code(uuid) with open('code.png', 'wb') as f: f.write(image) code = cv2.imread('code.png') blur = cv2.pyrMeanShiftFiltering(code, sp=8, sr=60) gray_code = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY) ret, binary_code = cv2.threshold(gray_code, 160, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 2)) bin1 = cv2.morphologyEx(binary_code, cv2.MORPH_OPEN, kernel) kernel = cv2.getStructuringElement(cv2.MORPH_OPEN, (2, 3)) bin2 = cv2.morphologyEx(bin1, cv2.MORPH_OPEN, kernel) cv2.bitwise_not(bin2, bin2) erode = cv2.erode(bin2, None, iterations=1) dilate = cv2.dilate(erode, None, iterations=1) #cv2.imshow('dilate', dilate) # 逻辑运算 让背景为白色 字体为黑 便于识别 # cv2.imshow('bin1', bin1) # cv2.imshow('bin2', bin2) cv2.imshow('1', code) cv2.waitKey(0) img = Image.fromarray(bin2) codes = pytesseract.image_to_string(img) print(codes) if __name__ == '__main__': main()

这段代码的作用是识别验证码。主要流程如下: 1. 定义了一个get_verify_code(uuid)函数,它通过向指定的URL发送请求获取验证码图片的二进制数据。 2. 定义了一个main()函数,它首先调用get_verify_code(uuid)函数获取验证码图片的二进制数据,并将其写入到本地文件code.png中。 3. 读取本地文件code.png,使用OpenCV库对验证码图片进行预处理,包括滤波、二值化、形态学处理等,最后得到处理后的二值图像bin2。 4. 将处理后的二值图像bin2转换为PIL格式,使用pytesseract库对验证码进行识别,得到识别结果codes。 5. 输出识别结果codes。 具体来说,代码中使用了以下的OpenCV函数进行图像处理: - cv2.imread:读取本地图片。 - cv2.pyrMeanShiftFiltering:对图片进行均值迁移滤波。 - cv2.cvtColor:将图片从BGR格式转换为灰度图。 - cv2.threshold:对灰度图进行二值化。 - cv2.getStructuringElement:生成结构元素。 - cv2.morphologyEx:对二值图像进行形态学处理。 - cv2.bitwise_not:对二值图像进行取反操作。 - cv2.erode:对二值图像进行腐蚀操作。 - cv2.dilate:对二值图像进行膨胀操作。 最后,使用pytesseract库中的image_to_string函数对处理后的图像进行识别,输出识别结果。

讲解这段代码:def read_img_and_convert_to_binary(filename): #读取待处理的图片 original_img = cv2.imread(filename) # print(original_img) #将原图分辨率缩小SCALSIZE倍,减少计算复杂度 original_img = cv2.resize(original_img,(np.int(original_img.shape[1]/SCALSIZE),np.int(original_img.shape[0]/SCALSIZE)), interpolation=cv2.INTER_AREA) #降噪 blur = cv2.GaussianBlur(original_img, (5, 5), 0) #将彩色图转化成灰度图 img_gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY) #图片开(opening)处理,用来降噪,使图片中的字符边界更圆滑,没有皱褶 kernel = np.ones((3, 3), np.uint8) opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel) kernel2 = np.ones((3,3), np.uint8) opening = cv2.dilate(opening, kernel2, iterations=1) # Otsu's thresholding after Gaussian filtering # 采用otsu阈值法将灰度图转化成只有0和1的二值图 blur = cv2.GaussianBlur(opening,(13,13),0) #ret, binary_img = cv2.threshold(img_gray, 120, 1, cv2.THRESH_BINARY_INV) ret,binary_img = cv2.threshold(blur,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) return original_img,binary_img

这段代码是一个函数,名为`read_img_and_convert_to_binary`,它的功能是读取一张待处理的图片并将其转换为二值图像。下面是对代码的逐行解释: 1. `original_img = cv2.imread(filename)`:使用OpenCV库的`imread`函数读取指定路径的图片,并将其存储在`original_img`变量中。 2. `original_img = cv2.resize(original_img,(np.int(original_img.shape[1]/SCALSIZE),np.int(original_img.shape[0]/SCALSIZE)), interpolation=cv2.INTER_AREA)`:将原图的分辨率缩小`SCALSIZE`倍,通过调整图像大小减少计算复杂度,结果存储在`original_img`变量中。 3. `blur = cv2.GaussianBlur(original_img, (5, 5), 0)`:使用高斯模糊对`original_img`进行降噪处理,减少图像中的噪点,结果存储在`blur`变量中。 4. `img_gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY)`:将降噪后的彩色图像转换为灰度图像,便于后续处理,结果存储在`img_gray`变量中。 5. `kernel = np.ones((3, 3), np.uint8)`:创建一个3x3的矩阵,用于后续图像形态学操作。 6. `opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel)`:对灰度图像进行形态学开运算(opening),通过腐蚀和膨胀操作使字符边界更加平滑,结果存储在`opening`变量中。 7. `kernel2 = np.ones((3,3), np.uint8)`:创建另一个3x3的矩阵,用于后续膨胀操作。 8. `opening = cv2.dilate(opening, kernel2, iterations=1)`:对开运算后的图像进行膨胀操作,进一步平滑字符边界,结果仍存储在`opening`变量中。 9. `blur = cv2.GaussianBlur(opening,(13,13),0)`:再次使用高斯模糊对图像进行降噪处理,参数(13,13)表示高斯核的大小。 10. `ret, binary_img = cv2.threshold(blur,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)`:使用Otsu阈值法将灰度图像转换为二值图像。该阈值法会自动选择一个合适的阈值,将图像分为黑白两部分,结果存储在`binary_img`变量中。 11. 最后,函数返回原始图像`original_img`和二值图像`binary_img`。 这段代码主要进行了图像预处理的步骤,包括降噪、灰度化、形态学操作和阈值处理,最终得到二值图像以供后续处理使用。

相关推荐

import cv2 import mediapipe as mp import time class FaceDetector(): def __init__(self, minDetectionCon=0.5): self.minDetectionCon = minDetectionCon self.mpFaceDetection = mp.solutions.face_detection self.mpDraw = mp.solutions.drawing_utils self.faceDetection = self.mpFaceDetection.FaceDetection(self.minDetectionCon) def findFaces(self, img, draw=True): imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) self.results = self.faceDetection.process(imgRGB) # print(self.results) bboxs = [] if self.results.detections: for id, detection in enumerate(self.results.detections): bboxC = detection.location_data.relative_bounding_box ih, iw, ic = img.shape bbox = int(bboxC.xmin * iw), int(bboxC.ymin * ih), \ int(bboxC.width * iw), int(bboxC.height * ih) bboxs.append([id, bbox, detection.score]) if draw: img = self.fancyDraw(img,bbox) cv2.putText(img, f'{int(detection.score[0] * 100)}%', (bbox[0], bbox[1] - 20), cv2.FONT_HERSHEY_PLAIN, 2, (255, 0, 255), 2) return img, bboxs def fancyDraw(self, img, bbox, l=30, t=5, rt= 1): x, y, w, h = bbox x1, y1 = x + w, y + h cv2.rectangle(img, bbox, (255, 0, 255), rt) # Top Left x,y cv2.line(img, (x, y), (x + l, y), (255, 0, 255), t) cv2.line(img, (x, y), (x, y+l), (255, 0, 255), t) # Top Right x1,y cv2.line(img, (x1, y), (x1 - l, y), (255, 0, 255), t) cv2.line(img, (x1, y), (x1, y+l), (255, 0, 255), t) # Bottom Left x,y1 cv2.line(img, (x, y1), (x + l, y1), (255, 0, 255), t) cv2.line(img, (x, y1), (x, y1 - l), (255, 0, 255), t) # Bottom Right x1,y1 cv2.line(img, (x1, y1), (x1 - l, y1), (255, 0, 255), t) cv2.line(img, (x1, y1), (x1, y1 - l), (255, 0, 255), t) return img def main(): cap = cv2.VideoCapture("Videos/6.mp4") pTime = 0 detector = FaceDetector() while True: success, img = cap.read() img, bboxs = detector.findFaces(img) print(bboxs) cTime = time.time() fps = 1 / (cTime - pTime) pTime = cTime cv2.putText(img, f'FPS: {int(fps)}', (20, 70), cv2.FONT_HERSHEY_PLAIN, 3, (0, 255, 0), 2) cv2.imshow("Image", img) cv2.waitKey(1) if __name__ == "__main__": main() 给以上代码进行解析讲解,并告诉我代码的亮点和难点

最新推荐

recommend-type

opencv+python实现鼠标点击图像,输出该点的RGB和HSV值

在计算机视觉领域,OpenCV(开源计算机视觉库)是一个广泛使用的库,它提供了许多用于图像处理和计算机视觉的函数。本篇内容将详细讲解如何使用OpenCV和Python实现鼠标点击图像,并输出所点击点的RGB和HSV颜色值。 ...
recommend-type

opencv 实现特定颜色线条提取与定位操作

hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # 设置红色HSV范围 redLower = np.array([156, 43, 46]) redUpper = np.array([179, 255, 255]) # 创建二值图像 mask = cv2.inRange(hsv, redLower, redUpper) # 二...
recommend-type

python模糊图片过滤的方法

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,提供了丰富的图像处理函数。对于模糊图片的检测,我们可以利用图像的拉普拉斯算子(Laplacian Operator)来计算图像的边缘...
recommend-type

基于Opencv实现颜色识别

(1)读取一张图片:`cvtColor(imgOriginal, imgHSV, COLOR_BGR2HSV)` (2)将彩色图像均衡化:`split(imgHSV, hsvSplit)`,`equalizeHist(hsvSplit[2], hsvSplit[2])`,`merge(hsvSplit, imgHSV)`。 (3)检测...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依