讲解cv2.cvtColor函数
时间: 2024-06-16 10:04:54 浏览: 161
cv2.cvtColor函数是OpenCV库中的一个函数,用于将图像从一个颜色空间转换为另一个颜色空间。它的语法如下:
```python
cv2.cvtColor(src, code[, dst[, dstCn]])
```
其中,参数说明如下:
- `src`:要转换的输入图像。
- `code`:指定转换的类型,可以是一个整数值或者一个字符串。常见的转换类型包括:
- `cv2.COLOR_BGR2GRAY`:将BGR彩色图像转换为灰度图像。
- `cv2.COLOR_BGR2RGB`:将BGR彩色图像转换为RGB彩色图像。
- `cv2.COLOR_BGR2HSV`:将BGR彩色图像转换为HSV颜色空间。
- 其他更多的转换类型可以参考OpenCV官方文档。
- `dst`:可选参数,输出图像,与输入图像具有相同的大小和深度。
- `dstCn`:可选参数,输出图像的通道数。
该函数会返回转换后的图像。
相关问题
对下面的代码进行讲解 from PIL import Image # import pytesseract import requests import uuid import time import cv2 def get_verify_code(uuid): url = f'https://dm.zjleiming.cn:9898/user/captcha?uuid={uuid}' response = requests.get(url) return response.content def main(): uuid = (str(time.time())) image = get_verify_code(uuid) with open('code.png', 'wb') as f: f.write(image) code = cv2.imread('code.png') blur = cv2.pyrMeanShiftFiltering(code, sp=8, sr=60) gray_code = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY) ret, binary_code = cv2.threshold(gray_code, 160, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 2)) bin1 = cv2.morphologyEx(binary_code, cv2.MORPH_OPEN, kernel) kernel = cv2.getStructuringElement(cv2.MORPH_OPEN, (2, 3)) bin2 = cv2.morphologyEx(bin1, cv2.MORPH_OPEN, kernel) cv2.bitwise_not(bin2, bin2) erode = cv2.erode(bin2, None, iterations=1) dilate = cv2.dilate(erode, None, iterations=1) #cv2.imshow('dilate', dilate) # 逻辑运算 让背景为白色 字体为黑 便于识别 # cv2.imshow('bin1', bin1) # cv2.imshow('bin2', bin2) cv2.imshow('1', code) cv2.waitKey(0) img = Image.fromarray(bin2) codes = pytesseract.image_to_string(img) print(codes) if __name__ == '__main__': main()
这段代码的作用是识别验证码。主要流程如下:
1. 定义了一个get_verify_code(uuid)函数,它通过向指定的URL发送请求获取验证码图片的二进制数据。
2. 定义了一个main()函数,它首先调用get_verify_code(uuid)函数获取验证码图片的二进制数据,并将其写入到本地文件code.png中。
3. 读取本地文件code.png,使用OpenCV库对验证码图片进行预处理,包括滤波、二值化、形态学处理等,最后得到处理后的二值图像bin2。
4. 将处理后的二值图像bin2转换为PIL格式,使用pytesseract库对验证码进行识别,得到识别结果codes。
5. 输出识别结果codes。
具体来说,代码中使用了以下的OpenCV函数进行图像处理:
- cv2.imread:读取本地图片。
- cv2.pyrMeanShiftFiltering:对图片进行均值迁移滤波。
- cv2.cvtColor:将图片从BGR格式转换为灰度图。
- cv2.threshold:对灰度图进行二值化。
- cv2.getStructuringElement:生成结构元素。
- cv2.morphologyEx:对二值图像进行形态学处理。
- cv2.bitwise_not:对二值图像进行取反操作。
- cv2.erode:对二值图像进行腐蚀操作。
- cv2.dilate:对二值图像进行膨胀操作。
最后,使用pytesseract库中的image_to_string函数对处理后的图像进行识别,输出识别结果。
讲解这段代码:def read_img_and_convert_to_binary(filename): #读取待处理的图片 original_img = cv2.imread(filename) # print(original_img) #将原图分辨率缩小SCALSIZE倍,减少计算复杂度 original_img = cv2.resize(original_img,(np.int(original_img.shape[1]/SCALSIZE),np.int(original_img.shape[0]/SCALSIZE)), interpolation=cv2.INTER_AREA) #降噪 blur = cv2.GaussianBlur(original_img, (5, 5), 0) #将彩色图转化成灰度图 img_gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY) #图片开(opening)处理,用来降噪,使图片中的字符边界更圆滑,没有皱褶 kernel = np.ones((3, 3), np.uint8) opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel) kernel2 = np.ones((3,3), np.uint8) opening = cv2.dilate(opening, kernel2, iterations=1) # Otsu's thresholding after Gaussian filtering # 采用otsu阈值法将灰度图转化成只有0和1的二值图 blur = cv2.GaussianBlur(opening,(13,13),0) #ret, binary_img = cv2.threshold(img_gray, 120, 1, cv2.THRESH_BINARY_INV) ret,binary_img = cv2.threshold(blur,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) return original_img,binary_img
这段代码是一个函数,名为`read_img_and_convert_to_binary`,它的功能是读取一张待处理的图片并将其转换为二值图像。下面是对代码的逐行解释:
1. `original_img = cv2.imread(filename)`:使用OpenCV库的`imread`函数读取指定路径的图片,并将其存储在`original_img`变量中。
2. `original_img = cv2.resize(original_img,(np.int(original_img.shape[1]/SCALSIZE),np.int(original_img.shape[0]/SCALSIZE)), interpolation=cv2.INTER_AREA)`:将原图的分辨率缩小`SCALSIZE`倍,通过调整图像大小减少计算复杂度,结果存储在`original_img`变量中。
3. `blur = cv2.GaussianBlur(original_img, (5, 5), 0)`:使用高斯模糊对`original_img`进行降噪处理,减少图像中的噪点,结果存储在`blur`变量中。
4. `img_gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY)`:将降噪后的彩色图像转换为灰度图像,便于后续处理,结果存储在`img_gray`变量中。
5. `kernel = np.ones((3, 3), np.uint8)`:创建一个3x3的矩阵,用于后续图像形态学操作。
6. `opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel)`:对灰度图像进行形态学开运算(opening),通过腐蚀和膨胀操作使字符边界更加平滑,结果存储在`opening`变量中。
7. `kernel2 = np.ones((3,3), np.uint8)`:创建另一个3x3的矩阵,用于后续膨胀操作。
8. `opening = cv2.dilate(opening, kernel2, iterations=1)`:对开运算后的图像进行膨胀操作,进一步平滑字符边界,结果仍存储在`opening`变量中。
9. `blur = cv2.GaussianBlur(opening,(13,13),0)`:再次使用高斯模糊对图像进行降噪处理,参数(13,13)表示高斯核的大小。
10. `ret, binary_img = cv2.threshold(blur,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)`:使用Otsu阈值法将灰度图像转换为二值图像。该阈值法会自动选择一个合适的阈值,将图像分为黑白两部分,结果存储在`binary_img`变量中。
11. 最后,函数返回原始图像`original_img`和二值图像`binary_img`。
这段代码主要进行了图像预处理的步骤,包括降噪、灰度化、形态学操作和阈值处理,最终得到二值图像以供后续处理使用。
阅读全文