讲解cv2.cvtColor函数

时间: 2024-06-16 09:04:54 浏览: 176
cv2.cvtColor函数是OpenCV库中的一个函数,用于将图像从一个颜色空间转换为另一个颜色空间。它的语法如下: ```python cv2.cvtColor(src, code[, dst[, dstCn]]) ``` 其中,参数说明如下: - `src`:要转换的输入图像。 - `code`:指定转换的类型,可以是一个整数值或者一个字符串。常见的转换类型包括: - `cv2.COLOR_BGR2GRAY`:将BGR彩色图像转换为灰度图像。 - `cv2.COLOR_BGR2RGB`:将BGR彩色图像转换为RGB彩色图像。 - `cv2.COLOR_BGR2HSV`:将BGR彩色图像转换为HSV颜色空间。 - 其他更多的转换类型可以参考OpenCV官方文档。 - `dst`:可选参数,输出图像,与输入图像具有相同的大小和深度。 - `dstCn`:可选参数,输出图像的通道数。 该函数会返回转换后的图像。
相关问题

对下面的代码进行讲解 from PIL import Image # import pytesseract import requests import uuid import time import cv2 def get_verify_code(uuid): url = f'https://dm.zjleiming.cn:9898/user/captcha?uuid={uuid}' response = requests.get(url) return response.content def main(): uuid = (str(time.time())) image = get_verify_code(uuid) with open('code.png', 'wb') as f: f.write(image) code = cv2.imread('code.png') blur = cv2.pyrMeanShiftFiltering(code, sp=8, sr=60) gray_code = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY) ret, binary_code = cv2.threshold(gray_code, 160, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 2)) bin1 = cv2.morphologyEx(binary_code, cv2.MORPH_OPEN, kernel) kernel = cv2.getStructuringElement(cv2.MORPH_OPEN, (2, 3)) bin2 = cv2.morphologyEx(bin1, cv2.MORPH_OPEN, kernel) cv2.bitwise_not(bin2, bin2) erode = cv2.erode(bin2, None, iterations=1) dilate = cv2.dilate(erode, None, iterations=1) #cv2.imshow('dilate', dilate) # 逻辑运算 让背景为白色 字体为黑 便于识别 # cv2.imshow('bin1', bin1) # cv2.imshow('bin2', bin2) cv2.imshow('1', code) cv2.waitKey(0) img = Image.fromarray(bin2) codes = pytesseract.image_to_string(img) print(codes) if __name__ == '__main__': main()

这段代码的作用是识别验证码。主要流程如下: 1. 定义了一个get_verify_code(uuid)函数,它通过向指定的URL发送请求获取验证码图片的二进制数据。 2. 定义了一个main()函数,它首先调用get_verify_code(uuid)函数获取验证码图片的二进制数据,并将其写入到本地文件code.png中。 3. 读取本地文件code.png,使用OpenCV库对验证码图片进行预处理,包括滤波、二值化、形态学处理等,最后得到处理后的二值图像bin2。 4. 将处理后的二值图像bin2转换为PIL格式,使用pytesseract库对验证码进行识别,得到识别结果codes。 5. 输出识别结果codes。 具体来说,代码中使用了以下的OpenCV函数进行图像处理: - cv2.imread:读取本地图片。 - cv2.pyrMeanShiftFiltering:对图片进行均值迁移滤波。 - cv2.cvtColor:将图片从BGR格式转换为灰度图。 - cv2.threshold:对灰度图进行二值化。 - cv2.getStructuringElement:生成结构元素。 - cv2.morphologyEx:对二值图像进行形态学处理。 - cv2.bitwise_not:对二值图像进行取反操作。 - cv2.erode:对二值图像进行腐蚀操作。 - cv2.dilate:对二值图像进行膨胀操作。 最后,使用pytesseract库中的image_to_string函数对处理后的图像进行识别,输出识别结果。

讲解这段代码:def read_img_and_convert_to_binary(filename): #读取待处理的图片 original_img = cv2.imread(filename) # print(original_img) #将原图分辨率缩小SCALSIZE倍,减少计算复杂度 original_img = cv2.resize(original_img,(np.int(original_img.shape[1]/SCALSIZE),np.int(original_img.shape[0]/SCALSIZE)), interpolation=cv2.INTER_AREA) #降噪 blur = cv2.GaussianBlur(original_img, (5, 5), 0) #将彩色图转化成灰度图 img_gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY) #图片开(opening)处理,用来降噪,使图片中的字符边界更圆滑,没有皱褶 kernel = np.ones((3, 3), np.uint8) opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel) kernel2 = np.ones((3,3), np.uint8) opening = cv2.dilate(opening, kernel2, iterations=1) # Otsu's thresholding after Gaussian filtering # 采用otsu阈值法将灰度图转化成只有0和1的二值图 blur = cv2.GaussianBlur(opening,(13,13),0) #ret, binary_img = cv2.threshold(img_gray, 120, 1, cv2.THRESH_BINARY_INV) ret,binary_img = cv2.threshold(blur,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) return original_img,binary_img

这段代码是一个函数,名为`read_img_and_convert_to_binary`,它的功能是读取一张待处理的图片并将其转换为二值图像。下面是对代码的逐行解释: 1. `original_img = cv2.imread(filename)`:使用OpenCV库的`imread`函数读取指定路径的图片,并将其存储在`original_img`变量中。 2. `original_img = cv2.resize(original_img,(np.int(original_img.shape[1]/SCALSIZE),np.int(original_img.shape[0]/SCALSIZE)), interpolation=cv2.INTER_AREA)`:将原图的分辨率缩小`SCALSIZE`倍,通过调整图像大小减少计算复杂度,结果存储在`original_img`变量中。 3. `blur = cv2.GaussianBlur(original_img, (5, 5), 0)`:使用高斯模糊对`original_img`进行降噪处理,减少图像中的噪点,结果存储在`blur`变量中。 4. `img_gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY)`:将降噪后的彩色图像转换为灰度图像,便于后续处理,结果存储在`img_gray`变量中。 5. `kernel = np.ones((3, 3), np.uint8)`:创建一个3x3的矩阵,用于后续图像形态学操作。 6. `opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel)`:对灰度图像进行形态学开运算(opening),通过腐蚀和膨胀操作使字符边界更加平滑,结果存储在`opening`变量中。 7. `kernel2 = np.ones((3,3), np.uint8)`:创建另一个3x3的矩阵,用于后续膨胀操作。 8. `opening = cv2.dilate(opening, kernel2, iterations=1)`:对开运算后的图像进行膨胀操作,进一步平滑字符边界,结果仍存储在`opening`变量中。 9. `blur = cv2.GaussianBlur(opening,(13,13),0)`:再次使用高斯模糊对图像进行降噪处理,参数(13,13)表示高斯核的大小。 10. `ret, binary_img = cv2.threshold(blur,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)`:使用Otsu阈值法将灰度图像转换为二值图像。该阈值法会自动选择一个合适的阈值,将图像分为黑白两部分,结果存储在`binary_img`变量中。 11. 最后,函数返回原始图像`original_img`和二值图像`binary_img`。 这段代码主要进行了图像预处理的步骤,包括降噪、灰度化、形态学操作和阈值处理,最终得到二值图像以供后续处理使用。
阅读全文

相关推荐

import cv2 import mediapipe as mp import time class FaceDetector(): def __init__(self, minDetectionCon=0.5): self.minDetectionCon = minDetectionCon self.mpFaceDetection = mp.solutions.face_detection self.mpDraw = mp.solutions.drawing_utils self.faceDetection = self.mpFaceDetection.FaceDetection(self.minDetectionCon) def findFaces(self, img, draw=True): imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) self.results = self.faceDetection.process(imgRGB) # print(self.results) bboxs = [] if self.results.detections: for id, detection in enumerate(self.results.detections): bboxC = detection.location_data.relative_bounding_box ih, iw, ic = img.shape bbox = int(bboxC.xmin * iw), int(bboxC.ymin * ih), \ int(bboxC.width * iw), int(bboxC.height * ih) bboxs.append([id, bbox, detection.score]) if draw: img = self.fancyDraw(img,bbox) cv2.putText(img, f'{int(detection.score[0] * 100)}%', (bbox[0], bbox[1] - 20), cv2.FONT_HERSHEY_PLAIN, 2, (255, 0, 255), 2) return img, bboxs def fancyDraw(self, img, bbox, l=30, t=5, rt= 1): x, y, w, h = bbox x1, y1 = x + w, y + h cv2.rectangle(img, bbox, (255, 0, 255), rt) # Top Left x,y cv2.line(img, (x, y), (x + l, y), (255, 0, 255), t) cv2.line(img, (x, y), (x, y+l), (255, 0, 255), t) # Top Right x1,y cv2.line(img, (x1, y), (x1 - l, y), (255, 0, 255), t) cv2.line(img, (x1, y), (x1, y+l), (255, 0, 255), t) # Bottom Left x,y1 cv2.line(img, (x, y1), (x + l, y1), (255, 0, 255), t) cv2.line(img, (x, y1), (x, y1 - l), (255, 0, 255), t) # Bottom Right x1,y1 cv2.line(img, (x1, y1), (x1 - l, y1), (255, 0, 255), t) cv2.line(img, (x1, y1), (x1, y1 - l), (255, 0, 255), t) return img def main(): cap = cv2.VideoCapture("Videos/6.mp4") pTime = 0 detector = FaceDetector() while True: success, img = cap.read() img, bboxs = detector.findFaces(img) print(bboxs) cTime = time.time() fps = 1 / (cTime - pTime) pTime = cTime cv2.putText(img, f'FPS: {int(fps)}', (20, 70), cv2.FONT_HERSHEY_PLAIN, 3, (0, 255, 0), 2) cv2.imshow("Image", img) cv2.waitKey(1) if __name__ == "__main__": main() 给以上代码进行解析讲解,并告诉我代码的亮点和难点

大家在看

recommend-type

2_JFM7VX690T型SRAM型现场可编程门阵列技术手册.pdf

复旦微国产大规模FPGA JFM7VX690T datasheet 手册 资料
recommend-type

网络信息系统应急预案-网上银行业务持续性计划与应急预案

包含4份应急预案 网络信息系统应急预案.doc 信息系统应急预案.DOCX 信息系统(系统瘫痪)应急预案.doc 网上银行业务持续性计划与应急预案.doc
recommend-type

RK eMMC Support List

RK eMMC Support List
recommend-type

DAQ97-90002.pdf

SCPI指令集 详细介绍(安捷伦)
recommend-type

毕业设计&课设-MATLAB的光场工具箱.zip

matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随

最新推荐

recommend-type

python+opencv边缘提取与各函数参数解析

然后,使用`cv2.cvtColor()`将图像转换为灰度模式,参数`cv2.COLOR_BGR2GRAY`指定颜色空间转换。灰度图像更适合边缘检测,因为它简化了图像的复杂性。 接着,应用Canny边缘检测算法,`cv2.Canny()`函数有两个阈值...
recommend-type

opencv+python实现鼠标点击图像,输出该点的RGB和HSV值

在计算机视觉领域,OpenCV(开源计算机视觉库)是一个广泛使用的库,它提供了许多用于图像处理和计算机视觉的函数。本篇内容将详细讲解如何使用OpenCV和Python实现鼠标点击图像,并输出所点击点的RGB和HSV颜色值。 ...
recommend-type

opencv 实现特定颜色线条提取与定位操作

hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # 设置红色HSV范围 redLower = np.array([156, 43, 46]) redUpper = np.array([179, 255, 255]) # 创建二值图像 mask = cv2.inRange(hsv, redLower, redUpper) # 二...
recommend-type

python模糊图片过滤的方法

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,提供了丰富的图像处理函数。对于模糊图片的检测,我们可以利用图像的拉普拉斯算子(Laplacian Operator)来计算图像的边缘...
recommend-type

【机器人】将ChatGPT飞书机器人钉钉机器人企业微信机器人公众号部署到vercel及docker_pgj.zip

【机器人】将ChatGPT飞书机器人钉钉机器人企业微信机器人公众号部署到vercel及docker_pgj
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。