一元线性回归matlab代码
时间: 2023-08-29 17:06:39 浏览: 170
一元线性回归的MATLAB代码可以使用以下方式实现:
```matlab
% 导入数据
data = load('data.txt');
x = data(:, 1); % 提取自变量 x 的数据
y = data(:, 4); % 提取因变量 y 的数据
% 计算均值
xmean = mean(x);
ymean = mean(y);
% 计算回归系数
m = sum((x - xmean) .* (y - ymean)) / sum((x - xmean).^2);
b = ymean - m * xmean;
% 输出结果
disp(['回归系数 m = ', num2str(m)]);
disp(['y-截距 b = ', num2str(b)]);
```
这段代码首先导入数据,然后计算自变量 x 和因变量 y 的均值。接下来,利用公式计算回归系数 m 和 y-截距 b。最后,输出结果显示回归系数和 y-截距。
请注意,这段代码是针对一元线性回归的情况,即只有一个自变量。如果需要进行多元线性回归,可以使用多元线性回归的代码段进行实现。<em>1</em><em>2</em><em>3</em>
#### 引用[.reference_title]
- *1* [(MATLAB)一元线性回归和多元线性回归](https://blog.csdn.net/weixin_45727931/article/details/108276021)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}} ] [.reference_item]
- *2* *3* [matlab一元线性回归函数](https://blog.csdn.net/y632481222/article/details/129271295)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}} ] [.reference_item]
[ .reference_list ]
阅读全文
相关推荐

















