def net(X): X = X.reshape((-1, num_inputs)) H = relu(X@W1 + b1) # 这里“@”代表矩阵乘法 return (H@W2 + b2)
时间: 2023-10-21 08:05:27 浏览: 123
python3.7解决最小二乘遇到ValueError:Expected 2D array, got 1D array instead: array=[5.].关于reshape和predict
这是一个定义了一个简单的神经网络的函数 net(X)。该函数接受一个输入张量 X,并按照一定的计算规则进行前向传播。
首先,通过调用 X.reshape((-1, num_inputs)),将输入张量 X 重新形状为一个二维矩阵,其中维度为 -1 的部分会根据其他维度的大小自动计算得到。
接下来,通过 X@W1 + b1 进行线性变换,其中 @ 表示矩阵乘法,W1 是一个权重矩阵,b1 是一个偏置向量。然后将线性变换的结果通过 relu() 函数进行激活函数操作,得到激活后的输出 H。
最后,将激活后的输出 H 通过 H@W2 + b2 进行另一次线性变换和激活操作,得到最终的输出结果。
整个函数 net(X) 定义了一个两层的全连接神经网络,并且没有经过任何训练,可以用于进行预测。
阅读全文