ResNet18的正确使用方式
时间: 2024-11-03 12:15:42 浏览: 42
ResNet18(Residual Network)是一种基础的卷积神经网络架构,由Kaiming He等人在2015年提出。在深度学习中,它以其残差连接(residual connections)而闻名,有助于解决深层网络训练过程中的梯度消失问题。
以下是ResNet18的基本使用步骤,在PyTorch中:
1. **导入必要的库**:
```python
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
```
2. **加载数据集**:
```python
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
```
3. **定义ResNet18模型**:
```python
model = nn.Sequential(*list(resnet18(pretrained=True).children())[:-1])
```
注意这里我们只取除了最后一层全连接层的部分,因为通常我们会添加自定义的分类层。
4. **加载预训练权重**:
```python
model.load_state_dict(torch.load('pretrained_resnet18.pth'))
```
5. **准备损失函数和优化器**:
```python
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
```
6. **训练模型**:
```python
for epoch in range(num_epochs):
for images, labels in train_loader:
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
7. **评估模型(测试阶段)**:
```python
model.eval()
test_loss, test_accuracy = evaluate_on_testset(model, test_loader)
```
阅读全文