resnet18如何加载本地权重
时间: 2023-07-27 17:13:00 浏览: 262
要加载本地权重,你需要使用PyTorch提供的torch.load()函数加载预训练权重文件。具体步骤如下:
1. 导入必要的库和模型
```python
import torch
import torchvision.models as models
model = models.resnet18()
```
2. 加载本地权重文件
```python
weight_path = '/path/to/weight/file.pth'
model.load_state_dict(torch.load(weight_path))
```
在上述代码中,'/path/to/weight/file.pth' 是你本地保存的权重文件的路径。请确保文件路径正确,并且权重文件与模型结构匹配。
3. 使用加载的权重进行预测
```python
input_data = torch.randn(1, 3, 224, 224)
output = model(input_data)
```
现在,你已经成功加载了本地权重,并且可以使用模型进行预测。
相关问题
resnet50 pytorch 加载权重文件的pridict文件
以下是使用 PyTorch 加载 ResNet50 预训练权重文件并进行预测的示例代码:
```python
import torch
import torchvision.models as models
import torchvision.transforms as transforms
from PIL import Image
# Load ResNet50 model
model = models.resnet50()
# Load pretrained weights
model.load_state_dict(torch.load('resnet50_weights.pth'))
# Set model to evaluation mode
model.eval()
# Load and preprocess image
image = Image.open('test_image.jpg')
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(image)
# Make predictions
with torch.no_grad():
output = model(image.unsqueeze(0))
probabilities = torch.nn.functional.softmax(output, dim=1)[0]
# Print top 5 predicted classes and their probabilities
top5_prob, top5_classes = torch.topk(probabilities, k=5)
for i in range(5):
print(f"Class: {top5_classes[i]}, Probability: {top5_prob[i]}")
```
需要注意的是,这里的预训练权重文件 `resnet50_weights.pth` 需要先下载并保存到本地。可以从 PyTorch 官网下载地址中找到对应的权重文件,也可以从其他来源下载。
基于tensorflow的resnet18提取本地cifar10图像特征的python详细代码
以下是基于tensorflow的resnet18提取本地cifar10图像特征的Python详细代码:
```python
import tensorflow as tf
from tensorflow.keras import layers, models, datasets
# 加载cifar10数据集
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
# 数据预处理
train_images = train_images.astype('float32') / 255.0
test_images = test_images.astype('float32') / 255.0
# 定义ResNet18模型
def ResNet18():
inputs = layers.Input(shape=(32, 32, 3))
# 第一层卷积
x = layers.Conv2D(64, (3, 3), padding='same')(inputs)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# 第一层残差块
y = layers.Conv2D(64, (3, 3), padding='same')(x)
y = layers.BatchNormalization()(y)
y = layers.Activation('relu')(y)
y = layers.Conv2D(64, (3, 3), padding='same')(y)
y = layers.BatchNormalization()(y)
y = layers.Add()([x, y])
y = layers.Activation('relu')(y)
# 第二层残差块
x = layers.MaxPooling2D((2, 2))(y)
x = layers.Conv2D(128, (3, 3), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
y = layers.Conv2D(128, (3, 3), padding='same')(x)
y = layers.BatchNormalization()(y)
y = layers.Activation('relu')(y)
y = layers.Conv2D(128, (3, 3), padding='same')(y)
y = layers.BatchNormalization()(y)
y = layers.Add()([x, y])
y = layers.Activation('relu')(y)
# 第三层残差块
x = layers.MaxPooling2D((2, 2))(y)
x = layers.Conv2D(256, (3, 3), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
y = layers.Conv2D(256, (3, 3), padding='same')(x)
y = layers.BatchNormalization()(y)
y = layers.Activation('relu')(y)
y = layers.Conv2D(256, (3, 3), padding='same')(y)
y = layers.BatchNormalization()(y)
y = layers.Add()([x, y])
y = layers.Activation('relu')(y)
# 第四层残差块
x = layers.MaxPooling2D((2, 2))(y)
x = layers.Conv2D(512, (3, 3), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
y = layers.Conv2D(512, (3, 3), padding='same')(x)
y = layers.BatchNormalization()(y)
y = layers.Activation('relu')(y)
y = layers.Conv2D(512, (3, 3), padding='same')(y)
y = layers.BatchNormalization()(y)
y = layers.Add()([x, y])
y = layers.Activation('relu')(y)
# 全局池化层和最终分类层
y = layers.GlobalAveragePooling2D()(y)
outputs = layers.Dense(10, activation='softmax')(y)
model = models.Model(inputs=inputs, outputs=outputs)
return model
# 加载ResNet18模型
model = ResNet18()
# 加载已经训练好的权重
model.load_weights('resnet18_cifar10.h5')
# 提取特征
train_features = model.predict(train_images)
test_features = model.predict(test_images)
# 打印特征的形状
print('train_features shape:', train_features.shape)
print('test_features shape:', test_features.shape)
```
注:本代码中的`resnet18_cifar10.h5`是已经训练好的权重文件,可以在训练过程中保存下来,然后在测试或者提取特征时加载使用。如果没有权重文件,可以参考其他教程训练一个resnet18模型并保存权重。
阅读全文