输出利用resnet18预训练本地cifar10文件并保存训练权重成.h5文件的python代码
时间: 2024-05-09 16:20:21 浏览: 161
以下是利用resnet18预训练本地cifar10文件并保存训练权重成.h5文件的python代码:
```python
import tensorflow as tf
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.applications.resnet import ResNet18
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint
# 加载cifar10数据集
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()
# 数据预处理
train_images = train_images / 255.0
test_images = test_images / 255.0
# 定义ResNet18模型
base_model = ResNet18(include_top=False, input_shape=(32, 32, 3))
x = Flatten()(base_model.output)
output = Dense(10, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=output)
# 冻结ResNet18模型的权重
for layer in base_model.layers:
layer.trainable = False
# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# 定义保存权重的回调函数
checkpoint = ModelCheckpoint('resnet18_cifar10.h5', save_best_only=True, save_weights_only=True, monitor='val_accuracy', mode='max')
# 训练模型
model.fit(train_images, train_labels, epochs=10, batch_size=32, validation_data=(test_images, test_labels), callbacks=[checkpoint])
```
通过以上代码,我们可以利用resnet18预训练本地cifar10文件并保存训练权重成.h5文件。
阅读全文