怎么训练resnet20模型并保存权重
时间: 2024-05-03 20:22:11 浏览: 118
no_gpu_darknet版yolov3手写数字识别训练好的模型权重文件 ,附带检测结果视频和整个工程(可配置为gpu版)
5星 · 资源好评率100%
训练resnet20模型并保存权重的步骤如下:
1. 导入相关库和数据集
```python
import tensorflow as tf
from tensorflow.keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0
```
2. 定义ResNet20模型
```python
def resnet20():
input_shape = (32, 32, 3)
num_classes = 10
inputs = tf.keras.layers.Input(shape=input_shape)
x = tf.keras.layers.Conv2D(16, (3, 3), padding='same', activation='relu')(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Conv2D(16, (3, 3), padding='same', activation='relu')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Conv2D(16, (3, 3), padding='same', activation='relu')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.add([x, inputs])
x = tf.keras.layers.Conv2D(32, (3, 3), padding='same', activation='relu')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Conv2D(32, (3, 3), padding='same', activation='relu')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Conv2D(32, (3, 3), padding='same', activation='relu')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.add([x, inputs])
x = tf.keras.layers.Conv2D(64, (3, 3), padding='same', activation='relu')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Conv2D(64, (3, 3), padding='same', activation='relu')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Conv2D(64, (3, 3), padding='same', activation='relu')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.add([x, inputs])
x = tf.keras.layers.GlobalAvgPool2D()(x)
outputs = tf.keras.layers.Dense(num_classes, activation='softmax')(x)
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
return model
model = resnet20()
```
3. 编译模型
```python
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```
4. 训练模型
```python
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))
```
5. 保存模型权重
```python
model.save_weights('resnet20_weights.h5')
```
这样就可以训练resnet20模型并保存权重了。
阅读全文