opencv红外可见光图像融合

时间: 2024-03-21 09:36:41 浏览: 27
OpenCV是一个开源的计算机视觉库,它提了丰富的图像处理和计算机视觉算法。红外可见光图像融合是指将红外图像和可见光图像进行融合,以提取出两种图像的有用信息,从而实现更好的图像分析和理解。 在OpenCV中,可以使用以下步骤进行红外可见光图像融合: 1. 加载红外图像和可见光图像:使用OpenCV的`imread`函数加载红外图像和可见光图像。 2. 图像预处理:对加载的图像进行预处理,例如调整大小、灰度化、直方图均衡化等操作,以便后续处理。 3. 特征提取:使用OpenCV提供的特征提取算法,如SIFT、SURF或ORB等,从红外图像和可见光图像中提取特征点。 4. 特征匹配:将红外图像和可见光图像的特征点进行匹配,找到对应的特征点对。 5. 图像融合:根据特征点对的位置关系,使用一定的融合算法将红外图像和可见光图像进行融合,生成融合后的图像。 6. 后处理:对融合后的图像进行后处理,如增强对比度、去噪等操作,以得到更好的结果。 7. 显示和保存:使用OpenCV的`imshow`函数显示融合后的图像,并使用`imwrite`函数保存图像。
相关问题

opencv红外与可见光图像融合

opencv红外与可见光图像融合是通过将红外图像和可见光图像进行融合处理,以提高图像的质量和信息的丰富性。 在opencv中,可以使用多种方法来实现红外与可见光图像融合。其中一种常用的方法是利用图像融合算法,如拉普拉斯金字塔融合算法或是小波变换融合算法。 首先,需要将红外图像和可见光图像进行预处理,包括对图像进行去噪和增强等操作。然后,可以使用拉普拉斯金字塔融合算法,将红外图像和可见光图像分别进行拉普拉斯金字塔分解,得到不同尺度的高频和低频图像。接着,将两个图像的低频部分进行加权平均,得到融合后的低频图像。最后,将高频图像进行相加或是相乘再进行重建,得到融合后的高频图像。将融合后的低频图像和高频图像进行重建,即可得到红外与可见光图像的融合结果。 另一种常用的方法是小波变换融合算法。在这种方法中,首先将红外图像和可见光图像进行小波变换,得到红外和可见光的小波系数。然后,根据一定的权重将两个图像的小波系数进行融合,得到融合后的小波系数。最后,将融合后的小波系数进行反变换,即可得到红外与可见光图像的融合结果。 无论是使用拉普拉斯金字塔融合算法还是小波变换融合算法,都可以实现红外与可见光图像的融合。这种融合方法可以提取红外图像和可见光图像中的有用信息并进行综合,增强图像的质量和信息的丰富性,有助于进一步的图像处理和分析。

红外 可见光 图像融合 Python 代码

这里提供一个基于Python的红外和可见光图像融合代码,主要使用了NumPy和OpenCV库。 首先安装所需库: ``` pip install numpy opencv-python ``` 以下是代码: ```python import cv2 import numpy as np # 载入红外图像 infrared_img = cv2.imread("infrared.jpg", 0) # 载入可见光图像 visible_img = cv2.imread("visible.jpg") # 将可见光图像进行拉伸,将像素值范围从 0-255 转换到 0-65535 visible_img = cv2.normalize(visible_img, None, 0, 65535, cv2.NORM_MINMAX) # 将可见光图像像素值类型转换为16位无符号整数 visible_img = np.uint16(visible_img) # 进行伽马变换,增强图像对比度 gamma = 2.2 visible_img = np.power((visible_img / float(np.max(visible_img))), gamma) visible_img = np.uint16(visible_img * 65535) # 将红外图像转换为3通道,便于与可见光图像进行融合 infrared_img = cv2.cvtColor(infrared_img, cv2.COLOR_GRAY2BGR) # 将可见光图像和红外图像进行加权融合 alpha = 0.4 beta = 1 - alpha fusion_img = cv2.addWeighted(visible_img, alpha, infrared_img, beta, 0) # 显示融合后的图像 cv2.imshow("fusion", fusion_img) cv2.waitKey(0) ``` 代码解释: 1. `cv2.imread` 载入两幅图像,分别为红外图像和可见光图像。 2. `cv2.normalize` 可见光图像拉伸像素值范围,将像素值范围从 0-255 转换到 0-65535。 3. `np.uint16` 将可见光图像的像素值类型转换为16位无符号整数。 4. `np.power` 进行伽马变换,增强图像对比度。 5. `cv2.cvtColor` 将红外图像转换为3通道,便于与可见光图像进行融合。 6. `cv2.addWeighted` 将可见光图像和红外图像进行加权融合。 7. `cv2.imshow` 显示融合后的图像。 注意事项: 1. 代码中可见光图像和红外图像的文件路径需要更改为实际路径; 2. 可见光图像的拉伸范围可根据实际情况进行调整; 3. 融合系数 `alpha` 可根据实际情况进行调整,通常为0.3到0.7之间。

相关推荐

最新推荐

recommend-type

opencv中图像叠加/图像融合/按位操作的实现

在OpenCV库中,图像处理是一项基础且重要的任务,其中包括图像叠加、图像融合以及按位操作等技术。这些方法在图像合成、图像增强以及视觉效果创造等方面有着广泛的应用。 一、图像叠加 图像叠加,也称为图像相加,...
recommend-type

opencv2实现10张图像上下左右拼接融合

主要为大家详细介绍了opencv2实现10张图像上下左右拼接融合,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

opencv实现多张图像拼接

主要为大家详细介绍了opencv实现多张图像拼接功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

python opencv 图像拼接的实现方法

Python OpenCV 图像拼接是一种将多张图片合并成一张全景图或连续场景的技术,它通过识别和匹配图像之间的相似特征来实现无缝拼接。在本文中,我们将深入探讨如何使用OpenCV库来实现这一过程。 首先,图像拼接分为...
recommend-type

opencv3/C++图像边缘提取方式

OpenCV 图像边缘提取方式 OpenCV 是一个计算机视觉库,提供了许多图像处理算法,今天我们将讨论 OpenCV 3 中的图像边缘提取方式。 图像边缘提取 图像边缘提取是图像处理技术中的一种重要技术,它可以从图像中提取...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。