选用MS COCO数据集,使用pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型,以加深对红外与可见光图像融合的理解,掌握图像融合、深度学习、多尺度分析的基本理论方法,实现红外与可见光图像的融合,包括训练、验证、测试等代码
时间: 2024-01-24 11:19:27 浏览: 147
红外和可见光图像融合,红外和可见光图像融合目的,Python
5星 · 资源好评率100%
很高兴为您提供帮助!下面是使用PyTorch训练基于多尺度自编码网络的红外与可见光图像融合模型的代码:
## 安装依赖
!pip install numpy
!pip install opencv-python
!pip install torch
!pip install torchvision
## 导入库
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
import numpy as np
import cv2
## 定义模型
class FusionNet(nn.Module):
def __init__(self):
super(FusionNet, self).__init__()
# 定义编码器
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.relu3 = nn.ReLU(inplace=True)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.relu4 = nn.ReLU(inplace=True)
self.conv5 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1)
self.relu5 = nn.ReLU(inplace=True)
# 定义解码器
self.deconv1 = nn.ConvTranspose2d(1024, 512, kernel_size=3, stride=1, padding=1)
self.relu6 = nn.ReLU(inplace=True)
self.deconv2 = nn.ConvTranspose2d(512, 256, kernel_size=3, stride=1, padding=1)
self.relu7 = nn.ReLU(inplace=True)
self.deconv3 = nn.ConvTranspose2d(256, 128, kernel_size=3, stride=1, padding=1)
self.relu8 = nn.ReLU(inplace=True)
self.deconv4 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=1, padding=1)
self.relu9 = nn.ReLU(inplace=True)
self.deconv5 = nn.ConvTranspose2d(64, 3, kernel_size=3, stride=1, padding=1)
def forward(self, x):
# 编码器
out = self.conv1(x)
out = self.relu1(out)
out = self.conv2(out)
out = self.relu2(out)
out = self.conv3(out)
out = self.relu3(out)
out = self.conv4(out)
out = self.relu4(out)
out = self.conv5(out)
out = self.relu5(out)
# 解码器
out = self.deconv1(out)
out = self.relu6(out)
out = self.deconv2(out)
out = self.relu7(out)
out = self.deconv3(out)
out = self.relu8(out)
out = self.deconv4(out)
out = self.relu9(out)
out = self.deconv5(out)
return out
## 准备数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 加载COCO数据集
train_set = datasets.CocoDetection(root='./data', annFile='/annotations/instances_train2014.json', transform=transform)
# 将可见光图像和红外图像进行融合
def fuse_images(img1, img2):
# 调整图像大小
img1 = cv2.resize(img1, (256, 256))
img2 = cv2.resize(img2, (256, 256))
# 将图像转换为灰度图像
img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 进行SIFT特征提取
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1_gray, None)
kp2, des2 = sift.detectAndCompute(img2_gray, None)
# 进行特征点匹配
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1, des2, k=2)
good_matches = []
for m, n in matches:
if m.distance < 0.5 * n.distance:
good_matches.append(m)
# 在可见光图像中提取匹配点
img1_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
# 在红外图像中提取匹配点
img2_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
# 进行透视变换
M, mask = cv2.findHomography(img2_pts, img1_pts, cv2.RANSAC, 5.0)
result = cv2.warpPerspective(img2, M, (img1.shape[1], img1.shape[0]))
# 将可见光图像和红外图像进行融合
alpha = 0.5
beta = (1.0 - alpha)
fused_image = cv2.addWeighted(img1, alpha, result, beta, 0.0)
return fused_image
## 训练模型
# 定义超参数
num_epochs = 100
batch_size = 32
learning_rate = 0.001
# 创建模型
model = FusionNet()
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 将模型移动到GPU上
if torch.cuda.is_available():
model.cuda()
# 开始训练
for epoch in range(num_epochs):
running_loss = 0.0
# 获取数据集
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True)
for i, (images, _) in enumerate(train_loader):
# 将数据移动到GPU上
if torch.cuda.is_available():
images = Variable(images.cuda())
else:
images = Variable(images)
# 前向传播
outputs = model(images)
# 计算损失
loss = criterion(outputs, images)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.data[0]
# 打印损失
print('Epoch [%d/%d], Loss: %.4f' % (epoch+1, num_epochs, running_loss/len(train_loader)))
# 保存模型
torch.save(model.state_dict(), 'model.ckpt')
## 测试模型
# 加载模型
model = FusionNet()
model.load_state_dict(torch.load('model.ckpt'))
# 将模型移动到GPU上
if torch.cuda.is_available():
model.cuda()
# 加载测试数据集
test_set = datasets.CocoDetection(root='./data', annFile='/annotations/instances_val2014.json', transform=transform)
# 进行测试
for i in range(len(test_set)):
# 获取测试数据
image, _ = test_set[i]
# 将数据移动到GPU上
if torch.cuda.is_available():
image = Variable(image.unsqueeze(0).cuda())
else:
image = Variable(image.unsqueeze(0))
# 前向传播
output = model(image)
# 将输出数据转换为图像
output = output.cpu().data.numpy().squeeze()
output = np.transpose(output, (1, 2, 0))
output = (output + 1) / 2.0 * 255.0
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
# 将可见光图像和红外图像进行融合
visible_image = cv2.imread(test_set.coco.loadImgs(test_set.ids[i])[0]['coco_url'])
fused_image = fuse_images(visible_image, output)
# 显示结果
cv2.imshow('Visible Image', visible_image)
cv2.imshow('Infrared Image', output)
cv2.imshow('Fused Image', fused_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
希望这个代码可以帮助到您!
阅读全文