python鸢尾花数据如何绘制roc曲线,计算auc的面积
时间: 2023-10-22 22:01:54 浏览: 141
main_roc_python_AUC_PR曲线_ROC曲线_
5星 · 资源好评率100%
要绘制Python鸢尾花数据的ROC曲线并计算AUC面积,可以按照以下步骤进行:
1. 导入所需的库和模块:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import label_binarize
from sklearn.metrics import roc_curve, auc
from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear_model import LogisticRegression
from itertools import cycle
```
2. 加载鸢尾花数据集:
```python
iris = load_iris()
X = iris.data
y = iris.target
```
3. 将标签进行二值化处理:
```python
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]
```
4. 训练分类模型并预测概率:
```python
classifier = OneVsRestClassifier(LogisticRegression())
y_score = classifier.fit(X, y).predict_proba(X)
```
5. 计算ROC曲线和AUC面积:
```python
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
```
6. 绘制ROC曲线:
```python
plt.figure()
colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color,
label='Class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic Example')
plt.legend(loc="lower right")
plt.show()
```
通过以上步骤,我们可以绘制出鸢尾花数据的ROC曲线,并计算出每个类别下的AUC面积。
阅读全文