针对手写数字识别,使用模型交叉验证功能中学习曲线或验证曲线对不同的n_neighbors值(或其他参数,可自行选取)的分类效果进行分析,写出代码并备注
时间: 2024-10-18 15:17:25 浏览: 24
手写数字识别通常涉及使用机器学习算法,如支持向量机(SVM)、K近邻(KNN)或者深度学习模型(比如卷积神经网络)。对于KNN模型,`n_neighbors`是一个关键参数,它决定了每个样本周围的邻居数。
使用Python的scikit-learn库,我们可以创建交叉验证(Cross-Validation)循环来评估不同`n_neighbors`值下的模型性能,并绘制学习曲线或验证曲线。这里我们以KNeighborsClassifier为例:
```python
# 导入所需库
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
import matplotlib.pyplot as plt
# 加载数据集
digits = load_digits()
X = digits.data
y = digits.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义参数网格搜索范围
param_grid = {'n_neighbors': list(range(1, 51))} # 可根据需要调整范围
# 创建KNN分类器
knn_clf = KNeighborsClassifier()
# 使用GridSearchCV进行交叉验证和最佳参数寻找
grid_search = GridSearchCV(knn_clf, param_grid, cv=5, scoring='accuracy') # 5折交叉验证
grid_search.fit(X_train, y_train)
# 获取最佳参数及其对应的准确率
best_n_neighbors = grid_search.best_params_['n_neighbors']
best_accuracy = grid_search.best_score_
# 计算各个`n_neighbors`的交叉验证得分并存储
scores = [cross_val_score(knn_clf, X_train, y_train, cv=5, n_neighbors=i).mean() for i in param_grid['n_neighbors']]
# 绘制学习曲线
plt.figure(figsize=(10, 6))
plt.plot(param_grid['n_neighbors'], scores, marker='o')
plt.xlabel('Number of neighbors (n_neighbors)')
plt.ylabel('Cross-validation accuracy')
plt.title(f'Learning Curve for KNN with Best Accuracy at {best_n_neighbors}')
plt.grid(True)
plt.show()
# 打印结果
print(f"Best n_neighbors value: {best_n_neighbors}")
print(f"Best accuracy: {best_accuracy}")
阅读全文