resnet为什么被命名为resnet
时间: 2024-05-03 07:15:48 浏览: 163
ResNet是指残差网络(Residual Network),它之所以被命名为ResNet,是因为其网络结构中引入了残差连接(residual connection)的概念。
在传统的深度神经网络中,随着网络层数的增加,梯度消失和梯度爆炸等问题会变得更加严重,导致网络的训练变得困难。为了解决这个问题,ResNet提出了残差学习的思想。
残差学习的核心思想是通过添加跨层的直连路径(即残差连接),将输入信号直接传递到后续层,使得网络可以更容易地学习到恒等映射。这样一来,即使网络层数很深,也能够保持较好的梯度流动,避免了梯度消失和梯度爆炸问题。
因此,ResNet的名称中的"Residual"指的是残差连接,而"Net"则代表网络。这个命名方式准确地描述了ResNet网络结构中引入残差连接的特点。
相关问题
Resnet bert
ResNet (Residual Network) 和 BERT (Bidirectional Encoder Representations from Transformers) 是两个非常不同的深度学习模型,分别应用于计算机视觉和自然语言处理领域。
1. **ResNet**:它是一种用于图像识别任务的深度卷积神经网络,由微软亚洲研究院于2015年提出。ResNet的核心思想是引入残差块(Residual Block),通过直接添加输入到经过一系列卷积、池化后的输出,解决了深层网络训练过程中的梯度消失问题,使得网络能够更深,从而提高了模型的性能。常见的ResNet变种如ResNet-50、ResNet-101和ResNet-152等,在ImageNet数据集上取得了显著成果。
2. **BERT**:由Google在2018年发布,是一个预训练的语言模型,基于Transformer架构。Bert全称Transformer-Based Encoder Representation from Transformers,它的设计允许模型同时考虑上下文信息,因此能够捕获句子的全局意义。BERT在各种自然语言处理任务上表现出色,比如文本分类、问答系统和命名实体识别等,并且可以作为基础模型微调到特定任务,显著提升了这些任务的性能。
python实现resnet
以下是Python实现ResNet的代码示例:
```python
import tensorflow as tf
def identity_block(X, f, filters, stage, block):
"""
实现恒等块
参数:
X - 输入的tensor类型的数据,维度为( m, n_H_prev, n_W_prev, n_H_prev )
f - 整数,指定主路径中间的CONV窗口的维度
filters - python整数列表,定义了主路径每层的卷积层的过滤器数量
stage - 整数,用于命名层,取决于他们在网络中的位置
block - 字符串/字符,用于命名层,取决于他们在网络中的位置
返回:
X - 恒等块的输出,tensor类型,维度为(n_H, n_W, n_C)
"""
# 定义命名规则
conv_name_base = "res" + str(stage) + block + "_branch"
bn_name_base = "bn" + str(stage) + block + "_branch"
# 获取过滤器
F1, F2, F3 = filters
# 保存输入数据,将会用于为主路径添加捷径
X_shortcut = X
# 主路径的第一部分
## 卷积层
X = tf.keras.layers.Conv2D(filters=F1, kernel_size=(1, 1), strides=(1, 1), padding="valid", name=conv_name_base+"2a", kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
## 归一化
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+"2a")(X)
## 使用ReLU激活函数
X = tf.keras.layers.Activation("relu")(X)
# 主路径的第二部分
## 卷积层
X = tf.keras.layers.Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding="same", name=conv_name_base+"2b", kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
## 归一化
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+"2b")(X)
## 使用ReLU激活函数
X = tf.keras.layers.Activation("relu")(X)
# 主路径的第三部分
## 卷积层
X = tf.keras.layers.Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding="valid", name=conv_name_base+"2c", kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
## 归一化
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+"2c")(X)
# 主路径的最后部分,添加捷径并使用ReLU激活函数
X = tf.keras.layers.Add()([X, X_shortcut])
X = tf.keras.layers.Activation("relu")(X)
return X
def convolutional_block(X, f, filters, stage, block, s=2):
"""
实现卷积块
参数:
X - 输入的tensor类型的数据,维度为( m, n_H_prev, n_W_prev, n_H_prev )
f - 整数,指定主路径中间的CONV窗口的维度
filters - python整数列表,定义了主路径每层的卷积层的过滤器数量
stage - 整数,用于命名层,取决于他们在网络中的位置
block - 字符串/字符,用于命名层,取决于他们在网络中的位置
s - 整数,指定要使用的步幅
返回:
X - 卷积块的输出,tensor类型,维度为(n_H, n_W, n_C)
"""
# 定义命名规则
conv_name_base = "res" + str(stage) + block + "_branch"
bn_name_base = "bn" + str(stage) + block + "_branch"
# 获取过滤器
F1, F2, F3 = filters
# 保存输入数据,将会用于为主路径添加捷径
X_shortcut = X
# 主路径的第一部分
## 卷积层
X = tf.keras.layers.Conv2D(filters=F1, kernel_size=(1, 1), strides=(s, s), padding="valid", name=conv_name_base+"2a", kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
## 归一化
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+"2a")(X)
## 使用ReLU激活函数
X = tf.keras.layers.Activation("relu")(X)
# 主路径的第二部分
## 卷积层
X = tf.keras.layers.Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding="same", name=conv_name_base+"2b", kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
## 归一化
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+"2b")(X)
## 使用ReLU激活函数
X = tf.keras.layers.Activation("relu")(X)
# 主路径的第三部分
## 卷积层
X = tf.keras.layers.Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding="valid", name=conv_name_base+"2c", kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
## 归一化
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+"2c")(X)
# 捷径的第二部分
X_shortcut = tf.keras.layers.Conv2D(filters=F3, kernel_size=(1, 1), strides=(s, s), padding="valid", name=conv_name_base+"1", kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X_shortcut)
X_shortcut = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+"1")(X_shortcut)
# 主路径的最后部分,添加捷径并使用ReLU激活函数
X = tf.keras.layers.Add()([X, X_shortcut])
X = tf.keras.layers.Activation("relu")(X)
return X
def ResNet50(input_shape=(64, 64, 3), classes=6):
"""
实现ResNet50
参数:
input_shape - 图像数据集的维度
classes - 整数,分类数
返回:
model - Keras框架的模型
"""
# 定义tensor类型的输入数据
X_input = tf.keras.layers.Input(input_shape)
# 0填充
X = tf.keras.layers.ZeroPadding2D((3, 3))(X_input)
# stage1
X = tf.keras.layers.Conv2D(filters=64, kernel_size=(7, 7), strides=(2, 2), name="conv1", kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name="bn_conv1")(X)
X = tf.keras.layers.Activation("relu")(X)
X = tf.keras.layers.MaxPooling2D(pool_size=(3, 3), strides=(2, 2))(X)
# stage2
X = convolutional_block(X, f=3, filters=[64, 64, 256], stage=2, block="a", s=1)
X = identity_block(X, 3, [64, 64, 256], stage=2, block="b")
X = identity_block(X, 3, [64, 64, 256], stage=2, block="c")
# stage3
X = convolutional_block(X, f=3, filters=[128, 128, 512], stage=3, block="a", s=2)
X = identity_block(X, 3, [128, 128, 512], stage=3, block="b")
X = identity_block(X, 3, [128, 128, 512], stage=3, block="c")
X = identity_block(X, 3, [128, 128, 512], stage=3, block="d")
# stage4
X = convolutional_block(X, f=3, filters=[256, 256, 1024], stage=4, block="a", s=2)
X = identity_block(X, 3, [256, 256, 1024], stage=4, block="b")
X = identity_block(X, 3, [256, 256, 1024], stage=4, block="c")
X = identity_block(X, 3, [256, 256, 1024], stage=4, block="d")
X = identity_block(X, 3, [256, 256, 1024], stage=4, block="e")
X = identity_block(X, 3, [256, 256, 1024], stage=4, block="f")
# stage5
X = convolutional_block(X, f=3, filters=[512, 512, 2048], stage=5, block="a", s=2)
X = identity_block(X, 3, [512, 512, 2048], stage=5, block="b")
X = identity_block(X, 3, [512, 512, 2048], stage=5, block="c")
# 平均池化层
X = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), padding="same")(X)
# 输出层
X = tf.keras.layers.Flatten()(X)
X = tf.keras.layers.Dense(classes, activation="softmax", name="fc"+str(classes), kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
# 创建模型
model = tf.keras.models.Model(inputs=X_input, outputs=X, name="ResNet50")
return model
```
阅读全文