if (abs(error_p) < 10) { angle_p_new = pid2.angle_p * (1 - increase_sin); } else { angle_p_new = pid2.angle_p * (1 + increase_sin); } if(error_p<0) { angle_p_new = pid2.angle_p*(1-increase_sin); } else { angle_p_new = pid2.angle_p*(1+increase_sin); }哪个更合理

时间: 2024-04-13 16:26:52 浏览: 70
根据您提供的代码,两个条件语句均存在冲突,因此需要根据具体要求来确定哪个条件更合理。 第一个条件语句是`if (abs(error_p) < 10)`,当误差 `error_p` 的绝对值小于10时,执行`angle_p_new = pid2.angle_p * (1 - increase_sin)`,否则执行`angle_p_new = pid2.angle_p * (1 + increase_sin)`。 第二个条件语句是`if(error_p<0)`,当误差 `error_p` 小于0时,执行`angle_p_new = pid2.angle_p*(1-increase_sin)`,否则执行`angle_p_new = pid2.angle_p*(1+increase_sin)`。 根据代码逻辑,如果 `error_p < 0`,则第二个条件语句会覆盖第一个条件语句中的赋值操作。如果您希望两个条件语句都能够起作用,并且根据具体需求来确定最终的 `angle_p_new` 值,可以将两个条件语句进行合并或者重新设计代码逻辑。
相关问题

解释以下代码每一句作用: def get_pid(self, error, scaler): tnow = millis() dt = tnow - self._last_t output = 0 if self._last_t == 0 or dt > 1000: dt = 0 self.reset_I() self._last_t = tnow delta_time = float(dt) / float(1000) output += error * self._kp if abs(self._kd) > 0 and dt > 0: if isnan(self._last_derivative): derivative = 0 self._last_derivative = 0 else: derivative = (error - self._last_error) / delta_time derivative = self._last_derivative + \ ((delta_time / (self._RC + delta_time)) * \ (derivative - self._last_derivative)) self._last_error = error self._last_derivative = derivative output += self._kd * derivative output *= scaler if abs(self._ki) > 0 and dt > 0: self._integrator += (error * self._ki) * scaler * delta_time if self._integrator < -self._imax: self._integrator = -self._imax elif self._integrator > self._imax: self._integrator = self._imax output += self._integrator return output

这段代码是一个PID控制器的实现。下面是每一句代码的作用解释: 1. `tnow = millis()`:获取当前时间。 2. `dt = tnow - self._last_t`:计算当前时间与上一次记录时间的差值,即时间间隔。 3. `output = 0`:初始化输出值。 4. `if self._last_t == 0 or dt > 1000:`:如果是第一次运行或者时间间隔超过1秒,则将时间间隔设置为0,并重置积分项。 5. `self._last_t = tnow`:更新上一次记录时间为当前时间。 6. `delta_time = float(dt) / float(1000)`:计算时间间隔的小数形式,单位为秒。 7. `output += error * self._kp`:将比例项乘以误差值并加到输出中。 8. `if abs(self._kd) > 0 and dt > 0:`:如果存在合法的微分系数且时间间隔大于0,则执行以下操作。 9. `if isnan(self._last_derivative):`:如果上一次微分项为NaN(非数字),则将其设置为0。 10. `derivative = (error - self._last_error) / delta_time`:计算当前微分项的值。 11. `derivative = self._last_derivative + ((delta_time / (self._RC + delta_time)) * (derivative - self._last_derivative))`:根据一阶惯性滤波器的公式更新微分项。 12. `self._last_error = error`:更新上一次误差值为当前误差值。 13. `self._last_derivative = derivative`:更新上一次微分项为当前微分项。 14. `output += self._kd * derivative`:将微分项乘以微分系数并加到输出中。 15. `output *= scaler`:将输出值乘以缩放因子。 16. `if abs(self._ki) > 0 and dt > 0:`:如果存在合法的积分系数且时间间隔大于0,则执行以下操作。 17. `self._integrator += (error * self._ki) * scaler * delta_time`:根据积分项的公式更新积分项。 18. `if self._integrator < -self._imax: self._integrator = -self._imax elif self._integrator > self._imax: self._integrator = self._imax`:对积分项进行限幅。 19. `output += self._integrator`:将积分项加到输出中。 20. `return output`:返回最终的输出值。

float Vertical(float target_angle, float current_angle, float gyro_x) { float Vetical_PWM; static float error; error += current_angle - target_angle; if(error>+8) error=+8; //积分限幅 if(error<-8) error=-8; //积分限幅 Vetical_PWM = Balance_Param.Angle_PID.kp * (current_angle - target_angle) + Balance_Param.Angle_PID.ki * error + Balance_Param.Angle_PID.kd * (gyro_x); return Vetical_PWM; }

这段代码是一个计算垂直方向控制的函数。它接收目标角度、当前角度和陀螺仪的 X 轴值作为输入,并返回计算得到的垂直方向的 PWM 值。 以下是代码的解释: - `Vetical_PWM` 是用于存储计算得到的 PWM 值的变量。 - 静态变量 `error` 用于在函数调用之间保持状态,它记录当前角度与目标角度之间的误差。 - `error` 变量通过累加当前角度与目标角度之差来更新,即进行误差积分。 - 如果 `error` 超过 +8 或小于 -8,会进行积分限幅。 - `Vetical_PWM` 根据 PID 控制器的参数和误差值进行计算。其中,KP、KI 和 KD 分别表示比例、积分和微分系数。当前角度与目标角度之差乘以 KP,误差乘以 KI,陀螺仪 X 轴值乘以 KD,然后相加得到最终的 PWM 值。 请注意,代码中使用了一个名为 `Balance_Param` 的结构体或对象来访问 PID 控制器的参数。具体的参数值需要根据实际需求进行设置。

相关推荐

请用中文解释这段代码:void ToLaserscanMessagePublish(ldlidar::Points2D& src, ldlidar::LiPkg* commpkg, LaserScanSetting& setting, rclcpp::Node::SharedPtr& node, rclcpp::Publisher<sensor_msgs::msg::LaserScan>::SharedPtr& lidarpub) { float angle_min, angle_max, range_min, range_max, angle_increment; double scan_time; rclcpp::Time start_scan_time; static rclcpp::Time end_scan_time; start_scan_time = node->now(); scan_time = (start_scan_time.seconds() - end_scan_time.seconds()); // Adjust the parameters according to the demand angle_min = ANGLE_TO_RADIAN(src.front().angle); angle_max = ANGLE_TO_RADIAN(src.back().angle); range_min = 0.02; range_max = 12; float spin_speed = static_cast<float>(commpkg->GetSpeedOrigin()); float scan_freq = static_cast<float>(commpkg->kPointFrequence); angle_increment = ANGLE_TO_RADIAN(spin_speed / scan_freq); // Calculate the number of scanning points if (commpkg->GetSpeedOrigin() > 0) { int beam_size = static_cast<int>(ceil((angle_max - angle_min) / angle_increment)); if (beam_size < 0) { RCLCPP_ERROR(node->get_logger(), "[ldrobot] error beam_size < 0"); } sensor_msgs::msg::LaserScan output; output.header.stamp = start_scan_time; output.header.frame_id = setting.frame_id; output.angle_min = angle_min; output.angle_max = angle_max; output.range_min = range_min; output.range_max = range_max; output.angle_increment = angle_increment; if (beam_size <= 1) { output.time_increment = 0; } else { output.time_increment = static_cast<float>(scan_time / (double)(beam_size - 1)); } output.scan_time = scan_time;

在运行以下R代码时:library(glmnet) library(ggplot2) # 生成5030的随机数据和30个变量 set.seed(1111) n <- 50 p <- 30 X <- matrix(runif(n * p), n, p) y <- rnorm(n) # 生成三组不同系数的线性模型 beta1 <- c(rep(1, 3), rep(0, p - 3)) beta2 <- c(rep(0, 10), rep(1, 3), rep(0, p - 13)) beta3 <- c(rep(0, 20), rep(1, 3), rep(0, p - 23)) y1 <- X %*% beta1 + rnorm(n) y2 <- X %*% beta2 + rnorm(n) y3 <- X %*% beta3 + rnorm(n) # 设置交叉验证折数 k <- 10 # 设置不同的lambda值 lambda_seq <- 10^seq(10, -2, length.out = 100) # 执行交叉验证和岭回归,并记录CV error和Prediction error cv_error <- list() pred_error <- list() for (i in 1:3) { # 交叉验证 cvfit <- cv.glmnet(X, switch(i, y1, y2, y3), alpha = 0, lambda = lambda_seq, nfolds = k) cv_error[[i]] <- cvfit$cvm # 岭回归 fit <- glmnet(X, switch(i, y1, y2, y3), alpha = 0, lambda = lambda_seq) pred_error[[i]] <- apply(X, 2, function(x) { x_mat <- matrix(x, nrow = n, ncol = p, byrow = TRUE) pred <- predict(fit, newx = x_mat) pred <- t(pred) # 转置 mean((x_mat %*% fit$beta - switch(i, y1, y2, y3))^2, na.rm = TRUE) # 修改此处 }) } # 绘制图形 par(mfrow = c(3, 2), mar = c(4, 4, 2, 1), oma = c(0, 0, 2, 0)) for (i in 1:3) { # CV error plot cv_plot_data <- cv_error[[i]] plot(log10(lambda_seq), cv_plot_data, type = "l", xlab = expression(log10), ylab = "CV error", main = paste0("Model ", i)) abline(v = log10(cvfit$lambda.min), col = "red") # Prediction error plot pred_plot_data <- pred_error[[i]] plot(log10(lambda_seq), pred_plot_data, type = "l", xlab = expression(log10), ylab = "Prediction error", main = paste0("Model ", i)) abline(v = log10(lambda_seq[which.min(pred_plot_data)]), col = "red") }。发生了以下问题:Error in xy.coords(x, y, xlabel, ylabel, log) : 'x'和'y'的长度不一样。请对原代码进行修正

void PID_Parameter_Init(PID *sptr) { sptr->SumError = 0; sptr->LastError = 0; sptr->PrevError = 0; sptr->LastData = 0; } int PID_Realize(PID *sptr, float *PID, int NowData, int Point) { int Realize; sptr->Dis_Err = Point - NowData; sptr->SumError += PID[KI] * sptr->Dis_Err; if (sptr->SumError >= PID[KT]) { sptr->SumError = PID[KT]; } else if (sptr->SumError <= -PID[KT]) { sptr->SumError = -PID[KT]; } Realize = PID[KP] * sptr->Dis_Err + sptr->SumError + PID[KD] *(sptr->Dis_Err - sptr->LastError); // + PID[KB] * ( NowData- sptr->LastData); sptr->PrevError = sptr->LastError; sptr->LastError = sptr->Dis_Err; sptr->LastData = NowData; return Realize; } int PID_Increase(PID *sptr, float *PID, int NowData, int Point) { int iError, Increase; iError = Point - NowData; Increase = PID[KP] * (iError - sptr->LastError) + PID[KI] * iError + PID[KD] * (iError - 2 * sptr->LastError + sptr->PrevError); sptr->PrevError = sptr->LastError; sptr->LastError = iError; sptr->LastData = NowData; return Increase; } Left_Acc = templ_pluse - Left_Old; Right_Acc = tempr_pluse - Right_Old; if (Left_Acc > 50) { Left_Old = Left_Old + 50; templ_pluse = Left_Old; } else if (Left_Acc < -50) { Left_Old = Left_Old - 50; templ_pluse = Left_Old; } else { templ_pluse = Left_Old; } if (Right_Acc > 50) { Right_Old = Right_Old + 50; tempr_pluse = Right_Old; } else if (Right_Acc < -50) { Right_Old = Right_Old - 50; tempr_pluse = Right_Old; } else { tempr_pluse = Right_Old; } RealSpeed_Old = ZJZ; ZJZ = (templ_pluse + tempr_pluse) * 0.5;

最新推荐

recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

**问题1:SystemError: unknown opcode** 这个问题通常发生在尝试在不同Python版本之间加载模型时。由于Python的Lambda函数在不同版本间可能存在差异,导致加载失败。解决办法是确保训练和加载模型的环境使用相同...
recommend-type

NR5G网络拒绝码-5gmm_cause = 111 (Protocol error, unspecified).docx

标题中的“NR5G网络拒绝码-5gmm_cause = 111 (Protocol error, unspecified)”是指在5G NR(New Radio)网络中,UE(User Equipment,用户设备)在尝试进行注册时遇到的问题。这个特定的拒绝码111(0x6f)表明存在一...
recommend-type

使用VS2019编译CEF2623项目的libcef_dll_wrapper.lib的方法

本篇文章主要介绍了使用VS2019编译CEF2623项目的libcef_dll_wrapper.lib的方法,该方法通过使用cmake-gui和VS2019实现在Windows 10环境下编译libcef_dll_wrapper.lib文件。下面是该方法的详细介绍: 一、准备环境 ...
recommend-type

解决-BASH: /HOME/JAVA/JDK1.8.0_221/BIN/JAVA: 权限不够问题

1. **进入JDK文件夹**: 首先,你需要通过终端进入Java的安装目录。在这个例子中,目录是`/HOME/JAVA/JDK1.8.0_221`。你可以使用`cd`命令来改变当前工作目录,例如: ``` cd /HOME/JAVA/JDK1.8.0_221 ``` 2. **...
recommend-type

OSEK标准_ISO 17356-2-2005_Part 2 OSEKVDX specifications for bindin

ISO 17356-2:2005 Part 2:OSEK/VDX specifications for binding OS,COM and NM 该标准最后一次审查和确认是在2020年。因此,该版本仍然是最新的。 摘要 ISO 17356-2:2005给出了OSEK/VDX规范,用于绑定嵌入式汽车...
recommend-type

批量文件重命名神器:HaoZipRename使用技巧

资源摘要信息:"超实用的批量文件改名字小工具rename" 在进行文件管理时,经常会遇到需要对大量文件进行重命名的场景,以统一格式或适应特定的需求。此时,批量重命名工具成为了提高工作效率的得力助手。本资源聚焦于介绍一款名为“rename”的批量文件改名工具,它支持增删查改文件名,并能够方便地批量操作,从而极大地简化了文件管理流程。 ### 知识点一:批量文件重命名的需求与场景 在日常工作中,无论是出于整理归档的目的还是为了符合特定的命名规则,批量重命名文件都是一个常见的需求。例如: - 企业或组织中的文件归档,可能需要按照特定的格式命名,以便于管理和检索。 - 在处理下载的多媒体文件时,可能需要根据文件类型、日期或其他属性重新命名。 - 在软件开发过程中,对代码文件或资源文件进行统一的命名规范。 ### 知识点二:rename工具的基本功能 rename工具专门设计用来处理文件名的批量修改,其基本功能包括但不限于: - **批量修改**:一次性对多个文件进行重命名。 - **增删操作**:在文件名中添加或删除特定的文本。 - **查改功能**:查找文件名中的特定文本并将其替换为其他文本。 - **格式统一**:为一系列文件统一命名格式。 ### 知识点三:使用rename工具的具体操作 以rename工具进行批量文件重命名通常遵循以下步骤: 1. 选择文件:根据需求选定需要重命名的文件列表。 2. 设定规则:定义重命名的规则,比如在文件名前添加“2023_”,或者将文件名中的“-”替换为“_”。 3. 执行重命名:应用设定的规则,批量修改文件名。 4. 预览与确认:在执行之前,工具通常会提供预览功能,允许用户查看重命名后的文件名,并进行最终确认。 ### 知识点四:rename工具的使用场景 rename工具在不同的使用场景下能够发挥不同的作用: - **IT行业**:对于软件开发者或系统管理员来说,批量重命名能够快速调整代码库中文件的命名结构,或者修改服务器上的文件名。 - **媒体制作**:视频编辑和摄影师经常需要批量重命名图片和视频文件,以便更好地进行分类和检索。 - **教育与学术**:教授和研究人员可能需要批量重命名大量的文档和资料,以符合学术规范或方便资料共享。 ### 知识点五:rename工具的高级特性 除了基本的批量重命名功能,一些高级的rename工具可能还具备以下特性: - **正则表达式支持**:利用正则表达式可以进行复杂的查找和替换操作。 - **模式匹配**:可以定义多种匹配模式,满足不同的重命名需求。 - **图形用户界面**:提供直观的操作界面,简化用户的操作流程。 - **命令行操作**:对于高级用户,可以通过命令行界面进行更为精准的定制化操作。 ### 知识点六:与rename相似的其他批量文件重命名工具 除了rename工具之外,还有多种其他工具可以实现批量文件重命名的功能,如: - **Bulk Rename Utility**:一个功能强大的批量重命名工具,特别适合Windows用户。 - **Advanced Renamer**:提供图形界面,并支持脚本,用户可以创建复杂的重命名方案。 - **MMB Free Batch Rename**:一款免费且易于使用的批量重命名工具,具有直观的用户界面。 ### 知识点七:避免批量重命名中的常见错误 在使用批量重命名工具时,有几个常见的错误需要注意: - **备份重要文件**:在批量重命名之前,确保对文件进行了备份,以防意外发生。 - **仔细检查规则**:设置好规则之后,一定要进行检查,确保规则的准确性,以免出现错误的命名。 - **逐步执行**:如果不确定规则的效果,可以先小批量试运行规则,确认无误后再批量执行。 - **避免使用通配符**:在没有充分理解通配符含义的情况下,不建议使用,以免误操作。 综上所述,批量文件改名工具rename是一个高效、便捷的解决方案,用于处理大量文件的重命名工作。通过掌握其使用方法和技巧,用户可以显著提升文件管理的效率,同时减少重复劳动,保持文件系统的整洁和有序。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

RestTemplate性能优化秘籍:提升API调用效率,打造极致响应速度

![RestTemplate性能优化秘籍:提升API调用效率,打造极致响应速度](https://media.geeksforgeeks.org/wp-content/uploads/20220309145320/WorkingOfRESTTemplate.jpg) # 1. RestTemplate基础与API调用概述 ## 1.1 RestTemplate简介 `RestTemplate`是Spring框架提供的一个同步HTTP客户端,设计用来简化客户端HTTP请求的发送以及HTTP响应的接收。它是针对Java开发者的REST API调用的高级抽象,为调用RESTful服务提供了便利。
recommend-type

Leader和follower 位置反了如何调换zookeeper

在ZooKeeper中,Leader和Follower的角色通常是静态分配的,并通过选举机制确定。如果需要调整它们的位置,通常是在集群初始化或者节点失效的情况下,会触发重新选举过程。 1. **停止服务**:首先,停止ZooKeeper服务的所有节点,包括当前的Leader和Follower。 2. **修改配置**:打开zoo.cfg配置文件,更改服务器列表(server.X=IP:port:角色),将原来的Leader的地址设为Follower,Follower的地址设为Leader。例如: ``` server.1=old_leader_ip:old_leader_po
recommend-type

简洁注册登录界面设计与代码实现

资源摘要信息:"在现代Web开发中,简洁美观的注册登录页面是用户界面设计的重要组成部分。简洁的页面设计不仅能够提升用户体验,还能提高用户完成注册或登录流程的意愿。本文将详细介绍如何创建两个简洁且功能完善的注册登录页面,涉及HTML5和前端技术。" ### 知识点一:HTML5基础 - **语义化标签**:HTML5引入了许多新标签,如`<header>`、`<footer>`、`<article>`、`<section>`等,这些语义化标签不仅有助于页面结构的清晰,还有利于搜索引擎优化(SEO)。 - **表单标签**:`<form>`标签是创建注册登录页面的核心,配合`<input>`、`<button>`、`<label>`等元素,可以构建出功能完善的表单。 - **增强型输入类型**:HTML5提供了多种新的输入类型,如`email`、`tel`、`number`等,这些类型可以提供更好的用户体验和数据校验。 ### 知识点二:前端技术 - **CSS3**:简洁的页面设计往往需要巧妙的CSS布局和样式,如Flexbox或Grid布局技术可以实现灵活的页面布局,而CSS3的动画和过渡效果则可以提升交云体验。 - **JavaScript**:用于增加页面的动态功能,例如表单验证、响应式布局切换、与后端服务器交互等。 ### 知识点三:响应式设计 - **媒体查询**:使用CSS媒体查询可以创建响应式设计,确保注册登录页面在不同设备上都能良好显示。 - **流式布局**:通过设置百分比宽度或视口单位(vw/vh),使得页面元素可以根据屏幕大小自动调整大小。 ### 知识点四:注册登录页面设计细节 - **界面简洁性**:避免过多的装饰性元素,保持界面的整洁和专业感。 - **易用性**:设计简洁直观的用户交互,确保用户能够轻松理解和操作。 - **安全性和隐私**:注册登录页面应特别注意用户数据的安全,如使用HTTPS协议保护数据传输,以及在前端进行基本的输入验证。 ### 知识点五:Zip文件内容解析 - **登录.zip**:该压缩包内可能包含登录页面的HTML、CSS和JavaScript文件,以及相关的图片和其他资源文件。开发者可以利用这些资源快速搭建一个登录界面。 - **滑动登录注册界面.zip**:该压缩包内可能包含了两个页面的文件,分别是注册和登录页面。文件可能包含用HTML5实现的滑动动画效果,通过CSS3和JavaScript的结合实现动态交互,提供更流畅的用户体验。 通过这些知识点,开发者能够创建出既简洁又功能完善的注册登录页面。需要注意的是,尽管页面设计要简洁,但安全措施不可忽视。使用加密技术保护用户数据,以及在用户端进行有效的数据验证,都是开发者在实现简洁界面同时需要考虑的安全要素。