使用pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型,第一阶段训练一个自动编码器网络,数据集COCO用于训练自编码器网络,第二阶段为融合阶段,融合网络包含三个主要部分:编码器、融合策略和解码器,并用模型对TNO数据集进行图像融合,给出具体代码
时间: 2023-07-15 10:13:28 浏览: 127
这是一个比较复杂的项目,需要较多的代码和训练时间,下面给出一个简单的代码示例,以供参考:
```
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# 定义自编码器网络
class Autoencoder(nn.Module):
def __init__(self):
super(Autoencoder, self).__init__()
# 编码器部分
self.encoder = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
nn.ReLU()
)
# 解码器部分
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(32, 3, kernel_size=3, stride=1, padding=1),
nn.Sigmoid()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# 定义融合网络
class FusionNet(nn.Module):
def __init__(self):
super(FusionNet, self).__init__()
# 编码器部分
self.encoder = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
nn.ReLU()
)
# 融合策略
self.fusion = nn.Sequential(
nn.Conv2d(1024, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(32, 3, kernel_size=3, stride=1, padding=1),
nn.Tanh()
)
# 解码器部分
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(32, 3, kernel_size=3, stride=1, padding=1),
nn.Sigmoid()
)
def forward(self, x1, x2):
# 编码器
x1 = self.encoder(x1)
x2 = self.encoder(x2)
# 融合
x = torch.cat((x1, x2), dim=1)
x = self.fusion(x)
# 解码器
x = self.decoder(x)
return x
# 数据集
train_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
train_dataset = datasets.CocoDetection(root='path/to/coco', annFile='path/to/annotations',
transform=train_transforms)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
# 训练自编码器网络
autoencoder = Autoencoder()
criterion = nn.MSELoss()
optimizer = optim.Adam(autoencoder.parameters(), lr=0.001)
for epoch in range(10):
running_loss = 0.0
for data in train_loader:
inputs, _ = data
optimizer.zero_grad()
outputs = autoencoder(inputs)
loss = criterion(outputs, inputs)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(train_loader.dataset)
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, epoch_loss))
# 训练融合网络
fusion_net = FusionNet()
criterion = nn.MSELoss()
optimizer = optim.Adam(fusion_net.parameters(), lr=0.001)
for epoch in range(10):
running_loss = 0.0
for data in train_loader:
inputs1, inputs2 = data
optimizer.zero_grad()
outputs = fusion_net(inputs1, inputs2)
loss = criterion(outputs, inputs1)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs1.size(0)
epoch_loss = running_loss / len(train_loader.dataset)
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, epoch_loss))
# 使用模型进行图像融合
test_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
test_dataset = datasets.ImageFolder(root='path/to/TNO', transform=test_transforms)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
for data in test_loader:
inputs, _ = data
inputs1 = inputs[:, :, :, :3]
inputs2 = inputs[:, :, :, 3:]
outputs = fusion_net(inputs1, inputs2)
# 显示结果
```
请注意,这只是一个简单的示例代码,需要根据具体情况进行修改和完善。同时,需要注意数据集的下载和路径设置,以及模型的保存和加载等问题。
阅读全文