用python实现:载入diabetes数据集,对完整数据集采用决策树进行回归训练,剪枝,在剪枝后的所有书中,选择第5好的树,即mse的绝对值第5小,其对应的叶子节点为?输出代码
时间: 2024-03-31 13:34:02 浏览: 55
好的,以下是实现代码:
```python
from sklearn.datasets import load_diabetes
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 载入数据集
diabetes = load_diabetes()
X = diabetes.data
y = diabetes.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练决策树模型
dt = DecisionTreeRegressor(random_state=42)
dt.fit(X_train, y_train)
# 剪枝
path = dt.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities
# 选择mse第5小的树
dt_list = []
for ccp_alpha in ccp_alphas:
dt = DecisionTreeRegressor(random_state=42, ccp_alpha=ccp_alpha)
dt.fit(X_train, y_train)
dt_list.append(dt)
dt_mse = [mean_squared_error(y_test, dt.predict(X_test)) for dt in dt_list]
dt_5 = dt_list[sorted(range(len(dt_mse)), key=lambda i: dt_mse[i])[4]]
# 输出叶子节点
print(dt_5.tree_.value[dt_5.apply(X_test)].tolist())
```
这段代码的核心流程如下:
1. 载入数据集并划分训练集和测试集;
2. 使用默认参数训练决策树模型;
3. 对训练好的模型进行剪枝,得到一系列ccp_alpha值;
4. 根据不同的ccp_alpha值,训练不同的决策树模型,并计算其在测试集上的mse;
5. 选择mse第5小的决策树模型,输出其叶子节点。
阅读全文