不使用pyswarms库,PSO优化算法优化LSTM神经网络参数:units、batch size、learning rate,请提供代码示例,并做详细注释
时间: 2024-03-28 13:40:32 浏览: 50
好的,我们可以使用Python的numpy库手动实现PSO算法来优化LSTM神经网络的参数。首先,我们需要准备好数据集,同样使用Keras自带的IMDB电影评论数据集。代码如下:
```python
from keras.datasets import imdb
from keras.preprocessing import sequence
# 加载数据集,仅保留前1000个最常用的单词
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=1000)
# 将输入数据填充到固定长度,如果长度不够则用0填充
max_len = 100
x_train = sequence.pad_sequences(x_train, maxlen=max_len)
x_test = sequence.pad_sequences(x_test, maxlen=max_len)
```
接下来,我们定义一个LSTM神经网络并编译它:
```python
from keras.models import Sequential
from keras.layers import LSTM, Dense, Embedding
from keras.optimizers import Adam
# 定义神经网络模型
model = Sequential()
model.add(Embedding(input_dim=1000, output_dim=32, input_length=max_len))
model.add(LSTM(units=32))
model.add(Dense(units=1, activation='sigmoid'))
# 编译模型
model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.01), metrics=['accuracy'])
```
现在我们就可以开始使用PSO优化算法来优化LSTM神经网络的参数了。首先,我们需要定义一个适应度函数来评估每组参数的性能。这里我们使用交叉验证的方法来评估模型的性能。
```python
from sklearn.model_selection import KFold
# 定义适应度函数
def fitness_function(x):
# 将参数转化为整数
units = int(x[0])
batch_size = int(x[1])
lr = 10**x[2]
# 定义K折交叉验证器
k = 5
kf = KFold(n_splits=k)
scores = []
for train_index, val_index in kf.split(x_train):
x_train_kf, x_val_kf = x_train[train_index], x_train[val_index]
y_train_kf, y_val_kf = y_train[train_index], y_train[val_index]
# 构建模型
model = Sequential()
model.add(Embedding(input_dim=1000, output_dim=32, input_length=max_len))
model.add(LSTM(units=units))
model.add(Dense(units=1, activation='sigmoid'))
# 编译模型
model.compile(loss='binary_crossentropy', optimizer=Adam(lr=lr), metrics=['accuracy'])
# 训练模型
model.fit(x_train_kf, y_train_kf, batch_size=batch_size, epochs=3, validation_data=(x_val_kf, y_val_kf), verbose=0)
# 评估模型
score = model.evaluate(x_test, y_test, verbose=0)
scores.append(score[1])
# 计算平均准确率
return sum(scores) / len(scores)
```
接下来,我们就可以开始使用PSO算法来搜索最优参数了。代码如下:
```python
import numpy as np
# 定义常量
n_particles = 10 # 粒子数
n_dim = 3 # 参数维度
c1 = 0.5 # 加速度系数1
c2 = 0.3 # 加速度系数2
w = 0.9 # 惯性权重
max_iter = 10 # 最大迭代次数
bounds = np.array([(16, 64), (16, 128), (-5, -2)]) # 参数范围
# 初始化粒子群
particles = np.random.rand(n_particles, n_dim) * (bounds[:, 1] - bounds[:, 0]) + bounds[:, 0]
velocities = np.zeros((n_particles, n_dim))
p_best_positions = particles.copy()
p_best_fitnesses = np.zeros(n_particles)
for i in range(n_particles):
p_best_fitnesses[i] = fitness_function(particles[i])
g_best_position = particles[p_best_fitnesses.argmax()].copy()
g_best_fitness = p_best_fitnesses.max()
# 开始迭代
for t in range(max_iter):
for i in range(n_particles):
# 更新速度
velocities[i] = w * velocities[i] + c1 * np.random.rand() * (p_best_positions[i] - particles[i]) + c2 * np.random.rand() * (g_best_position - particles[i])
# 更新位置
particles[i] += velocities[i]
# 限制参数范围
particles[i] = np.clip(particles[i], bounds[:, 0], bounds[:, 1])
# 计算适应度
fitness = fitness_function(particles[i])
# 更新个体最优解
if fitness > p_best_fitnesses[i]:
p_best_positions[i] = particles[i].copy()
p_best_fitnesses[i] = fitness
# 更新全局最优解
if fitness > g_best_fitness:
g_best_position = particles[i].copy()
g_best_fitness = fitness
# 输出每一代的全局最优解和适应度
print(f'Iter {t+1}: Best position = {g_best_position}, Best fitness = {g_best_fitness}')
```
以上就是使用PSO算法优化LSTM神经网络参数的完整代码。我们手动实现了PSO算法来搜索最优参数,并定义了一个适应度函数来评估每组参数的性能。
阅读全文