autoencoder代码pytorch
时间: 2023-06-05 17:48:05 浏览: 134
以下是一个简单的 PyTorch 实现的自动编码器代码示例:
```
import torch
import torch.nn as nn
class Autoencoder(nn.Module):
def __init__(self, input_size, hidden_size):
super(Autoencoder, self).__init__()
self.encoder = nn.Linear(input_size, hidden_size)
self.decoder = nn.Linear(hidden_size, input_size)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
input_size = 784
hidden_size = 32
model = Autoencoder(input_size, hidden_size)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
# Train the model
for epoch in range(num_epochs):
for data in dataloader:
img, _ = data
img = img.view(img.size(0), -1)
img = img.to(device)
output = model(img)
loss = criterion(output, img)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
这仅是一个简单的自动编码器的示例,可能需要根据实际问题进行更改。
阅读全文