Google Earth Engine进行去云处理并逐月计算ndvi并获取时间序列的代码
时间: 2024-05-03 16:23:30 浏览: 85
以下是Google Earth Engine进行去云处理并逐月计算ndvi并获取时间序列的代码:
```javascript
// Load Landsat 8 surface reflectance data.
var collection = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR')
.filterDate('2013-01-01', '2021-12-31')
.filterBounds(geometry)
.map(function(image) {
var qa = image.select('pixel_qa');
// Bits 3 and 5 are cloud and cloud shadow, respectively.
var cloud = qa.bitwiseAnd(1 << 3)
.or(qa.bitwiseAnd(1 << 5));
// Remove cloud and cloud shadow pixels.
var masked = image.updateMask(cloud.not());
// Compute NDVI.
var ndvi = masked.normalizedDifference(['B5', 'B4'])
.rename('NDVI');
// Add time band.
var time = image.metadata('system:time_start')
.divide(1000 * 60 * 60 * 24 * 30)
.floor()
.int()
.rename('time');
return masked.addBands(ndvi).addBands(time);
});
// Create monthly composites and reduce to mean.
var monthlyComposites = ee.ImageCollection.fromImages(
ee.List.sequence(0, 103).map(function(month) {
var filtered = collection.filter(ee.Filter.eq('time', month));
var composite = filtered.mean();
return composite.set('month', month);
})
);
// Get NDVI time series.
var ndviTimeSeries = monthlyComposites.select('NDVI')
.reduceRegions({
collection: geometry,
reducer: ee.Reducer.mean(),
scale: 30
})
.get('groups')
.map(function(group) {
return ee.Feature(geometry)
.set('NDVI', group.mean)
.set('month', group.month);
});
print(ndviTimeSeries);
```
该代码首先加载了Landsat 8表面反射数据,并根据日期和地理位置筛选出需要的数据。然后,代码对每个图像进行去云处理,计算NDVI,并添加时间带。接下来,代码从每个月的图像集合中创建月度组合,并将其减少为平均值。最后,代码从NDVI时间序列中获取数据,并按月份和位置进行分组。最终,代码输出ndviTimeSeries。
阅读全文