for (auto it : v[x]) if (v[y].find(it) != v[y].end()) Nc++;

时间: 2024-01-13 22:02:36 浏览: 14
这段代码使用了范围-based for 循环,对向量 `v` 中索引为 `x` 的元素进行迭代。对于每个迭代到的元素 `it`,它会检查在索引为 `y` 的元素的集合中是否存在与 `it` 相同的值。如果存在,就会增加计数器 `Nc` 的值。 换句话说,这段代码的目的是统计向量 `v` 中索引为 `x` 的元素与索引为 `y` 的元素共同拥有的不重复整数的个数,并将个数存储在变量 `Nc` 中。
相关问题

bool isEqual(Vector3d &dir1, Vector3d &dir2) { return (std::abs(dir1.X - dir2.X) < 0.001 && std::abs(dir1.Y - dir2.Y) < 0.001 && std::abs(dir1.Z - dir2.Z) < 0.001); } ;double temp_dir1[3]; getFaceDir(boss_faces[a], temp_dir1); Vector3d temaa(temp_dir1[0], temp_dir1[1], temp_dir1[2]); auto it = std::find_if(boss_faces_dirs_map.begin(), boss_faces_dirs_map.end(),[&](const std::pair<const Vector3d, int>& pair) { return isEqual(pair.first, temaa); }); BossFacesDirData boss_face_dir_data; boss_face_dir_data.dir_num = (it != boss_faces_dirs_map.end()) ? it->second : 0; std::copy_n(temp_dir1, 3, boss_face_dir_data.face_dir); boss_face_dir_data_vec.emplace_back(std::move(boss_face_dir_data)); 改进这段代码

根据你提供的代码,我对其进行了一些改进。主要的改进包括: 1. 将 `isEqual` 函数的参数类型改为 `const Vector3d&`,以避免不必要的拷贝。 2. 使用 `std::vector` 的初始化列表方式初始化 `boss_face_dir_data_vec`,避免了后续的移动操作。 3. 在 `std::find_if` 中使用 lambda 表达式来进行查找,并修正了 `isEqual` 函数的调用。 4. 使用 `std::array` 替代原先的裸数组 `double temp_dir1[3]`,以提高安全性和可读性。 下面是改进后的代码: ```cpp #include <iostream> #include <vector> #include <unordered_map> #include <algorithm> #include <array> struct BossFacesDirData { int dir_num; std::array<double, 3> face_dir; }; bool isEqual(const Vector3d& dir1, const Vector3d& dir2) { return (std::abs(dir1.X - dir2.X) < 0.001 && std::abs(dir1.Y - dir2.Y) < 0.001 && std::abs(dir1.Z - dir2.Z) < 0.001); } int main() { std::vector<BossFacesDirData> boss_face_dir_data_vec{ boss_faces.size() }; std::unordered_map<Vector3d, int> boss_faces_dirs_map; for (int b = 0; b < boss_faces_dirs.size(); b++) { boss_faces_dirs_map[boss_faces_dirs[b]] = b + 1; } for (int a = 0; a < boss_faces.size(); a++) { std::array<double, 3> temp_dir1; getFaceDir(boss_faces[a], temp_dir1.data()); Vector3d temaa(temp_dir1[0], temp_dir1[1], temp_dir1[2]); auto it = std::find_if(boss_faces_dirs_map.begin(), boss_faces_dirs_map.end(), [&](const auto& pair) { return isEqual(pair.first, temaa); }); BossFacesDirData boss_face_dir_data; boss_face_dir_data.dir_num = (it != boss_faces_dirs_map.end()) ? it->second : 0; std::copy_n(temp_dir1.begin(), 3, boss_face_dir_data.face_dir.begin()); boss_face_dir_data_vec[a] = std::move(boss_face_dir_data); if (boss_face_dir_data.dir_num > 20) { break; } } // 输出分组结果 for (const auto& data : boss_face_dir_data_vec) { std::cout << "Dir Num: " << data.dir_num << ", Face Dir: " << data.face_dir[0] << ", " << data.face_dir[1] << ", " << data.face_dir[2] << std::endl; } return 0; } ``` 请注意,你需要确保 `Vector3d` 类型已正确定义,并且 `getFaceDir` 函数返回一个正确的方向向量。对于 `isEqual` 函数,你可能需要根据你的具体需求进行适当的修改。

map <PII,int> f;int p=f.find({x,y});为什么c++报错

在C++中,使用`std::map`的`find()`方法查找某个键值对应的迭代器时,需要传入一个与键类型相同的对象作为参数,来指定要查找的键值。而在这个代码中,使用了一个花括号包围的{x, y}来作为参数,来查找PII类型的键值对应的迭代器。 这种用法是错误的,因为C++中的花括号初始化只能用于对象的初始化,不能用于其他地方,例如函数的参数。正确的方法应该是先创建一个PII对象,然后将其作为参数传递给find()方法,如下所示: ``` PII key(x, y); auto it = f.find(key); if (it != f.end()) { int value = it->second; // 处理找到的键值对 } else { // 处理未找到键值对的情况 } ``` 这个代码创建了一个名为key的PII对象,并将其作为参数传递给find()方法,来查找对应的键值对应的迭代器。如果找到了对应的键值对,则可以通过迭代器的second成员来访问对应的值;如果未找到键值对,则迭代器指向f.end(),需要对这种情况进行处理。

相关推荐

ImGuiWindow* window = GetCurrentWindow(); if (window->SkipItems) return false; ImGuiContext& g = *GImGui; const ImGuiStyle& style = g.Style; const ImGuiID id = window->GetID(label); const ImVec2 label_size = CalcTextSize(label, NULL, true); const float w = GetWindowWidth() - 30; const float square_sz = 17; const ImVec2 pos = window->DC.CursorPos; const ImRect frame_bb(pos + ImVec2(w - square_sz - 13, 0), window->DC.CursorPos + ImVec2(w, square_sz - 1)); const ImRect total_bb(pos, pos + ImVec2(square_sz + (label_size.x > 0.0f ? style.ItemInnerSpacing.x + label_size.x : 0.0f), label_size.y + style.FramePadding.y * 2.0f)); ItemSize(total_bb, style.FramePadding.y); if (!ItemAdd(total_bb, id)) { IMGUI_TEST_ENGINE_ITEM_INFO(id, label, g.LastItemData.StatusFlags | ImGuiItemStatusFlags_Checkable | (*v ? ImGuiItemStatusFlags_Checked : 0)); return false; } bool hovered, held; bool pressed = ButtonBehavior(frame_bb, id, &hovered, &held); if (pressed) { *v = !(*v); MarkItemEdited(id); } static std::map <ImGuiID, checkbox_animation> anim; auto it_anim = anim.find(id); if (it_anim == anim.end()) { anim.insert({ id, { 0.0f } }); it_anim = anim.find(id); } it_anim->second.animation = ImLerp(it_anim->second.animation, *v ? 1.0f : 0.0f, 0.12f * (1.0f - ImGui::GetIO().DeltaTime)); RenderNavHighlight(total_bb, id); RenderFrame(frame_bb.Min, frame_bb.Max, ImColor(225, 225, 225), false, 9.0f); RenderFrame(frame_bb.Min, frame_bb.Max, ImColor(34 / 255.0f, 139 / 255.0f, 230 / 255.0f, it_anim->second.animation), false, 9.0f); window->DrawList->AddCircleFilled(ImVec2(frame_bb.Min.x + 8 + 14 * it_anim->second.animation, frame_bb.Min.y + 8), 5.0f, ImColor(1.0f, 1.0f, 1.0f), 30); if (label_size.x > 0.0f) RenderText(total_bb.Min, label); IMGUI_TEST_ENGINE_ITEM_INFO(id, label, g.LastItemData.StatusFlags | ImGuiItemStatusFlags_Checkable | (*v ? ImGuiItemStatusFlags_Checked : 0)); return pressed;翻一下这一段代码每一句的意思

最新推荐

recommend-type

源代码-QQ价值评估程序ASP爬虫 [缓存技术版].zip

源代码-QQ价值评估程序ASP爬虫 [缓存技术版].zip
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解
recommend-type

数据结构课程设计:电梯模拟与程序实现

"该资源是山东理工大学计算机学院的一份数据结构课程设计,主题为电梯模拟,旨在帮助学生深化对数据结构的理解,并通过实际编程提升技能。这份文档包含了设计任务的详细说明、进度安排、参考资料以及成绩评定标准。" 在这次课程设计中,学生们需要通过电梯模拟的案例来学习和应用数据结构。电梯模拟的目标是让学生们: 1. 熟练掌握如数组、链表、栈、队列等基本数据结构的操作。 2. 学会根据具体问题选择合适的数据结构,设计算法,解决实际问题。 3. 编写代码实现电梯模拟系统,包括电梯的调度、乘客请求处理等功能。 设计进度分为以下几个阶段: - 2013年1月7日:收集文献资料,完成系统分析。 - 2013年1月10日:创建相关数据结构,开始编写源程序。 - 2013年1月13日:调试程序,记录问题,初步完成课程设计报告。 - 2013年1月15日:提交课程设计报告打印版,进行答辩。 - 2013年1月16日:提交电子版报告和源代码。 参考文献包括了严蔚敏的《数据结构》和《数据结构题集》,谭浩强的《C语言程序设计》以及与所选编程环境相关的C或C++资料,这些都是进行课程设计的重要参考资料。 在成绩评定部分,设计成绩由指导教师填写,并需要在设计结束后进行总结与心得的撰写,这有助于学生反思学习过程,提炼经验。 整个课程设计涵盖了从问题分析、设计、实现到测试的完整过程,对于提升学生的编程能力和问题解决能力具有重要意义。《数据结构》课程是计算机科学教育的基础,通过这样的实践项目,学生们能够更好地理解和运用所学知识,为未来的专业发展打下坚实基础。