随机森林叶节点加权python代码
时间: 2023-06-06 17:09:00 浏览: 119
感谢您的提问。以下是我给您找到的随机森林叶节点加权的 Python 代码:
```python
from sklearn.ensemble import RandomForestClassifier
class WeightedRandomForestClassifier(RandomForestClassifier):
def __init__(self, n_estimators=100, criterion='gini', max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features='auto', max_leaf_nodes=None, bootstrap=True,
oob_score=False, n_jobs=None, random_state=None, verbose=0,
class_weight=None, ccp_alpha=0.0, min_impurity_decrease=0.0,
min_impurity_split=None, warm_start=False):
super().__init__(n_estimators=n_estimators, criterion=criterion, max_depth=max_depth,
min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf,
min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features,
max_leaf_nodes=max_leaf_nodes, bootstrap=bootstrap,
oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose,
class_weight=class_weight, ccp_alpha=ccp_alpha, min_impurity_decrease=min_impurity_decrease,
min_impurity_split=min_impurity_split, warm_start=warm_start)
def fit(self, X, y, sample_weight=None):
self.sample_weight = sample_weight
super().fit(X, y)
def _make_estimator(self, append=True):
estimator = super()._make_estimator(append=append)
if self.sample_weight is not None:
estimator.tree_.value *= self.sample_weight[:, np.newaxis]
return estimator
```
此处提供的代码是基于 sklearn 的随机森林实现的,具体做法是重载了 `fit` 方法,将外部传入的随机森林叶节点的权重保存到实例的 `sample_weight` 属性中,然后在叶节点进行加权(通过与叶子节点的值相乘的方式)。注意,在使用此方法时,需要对样本的权重进行特殊处理。
阅读全文