GAN缺陷数据增强代码
时间: 2024-02-18 07:57:40 浏览: 71
以下是使用GAN进行数据增强的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.autograd.variable import Variable
# 定义生成器和判别器模型
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
# 定义生成器的网络结构
def forward(self, x):
# 生成器的前向传播过程
return x
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
# 定义判别器的网络结构
def forward(self, x):
# 判别器的前向传播过程
return x
# 定义训练函数
def train_gan(generator, discriminator, dataloader, num_epochs):
# 定义损失函数和优化器
loss_function = nn.BCELoss()
generator_optimizer = optim.Adam(generator.parameters(), lr=0.0002)
discriminator_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002)
for epoch in range(num_epochs):
for i, real_images in enumerate(dataloader):
# 训练判别器
discriminator.zero_grad()
real_labels = torch.ones(real_images.size(0))
real_output = discriminator(real_images)
real_loss = loss_function(real_output, real_labels)
fake_labels = torch.zeros(real_images.size(0))
noise = Variable(torch.randn(real_images.size(0), 100))
fake_images = generator(noise)
fake_output = discriminator(fake_images.detach())
fake_loss = loss_function(fake_output, fake_labels)
discriminator_loss = real_loss + fake_loss
discriminator_loss.backward()
discriminator_optimizer.step()
# 训练生成器
generator.zero_grad()
fake_output = discriminator(fake_images)
generator_loss = loss_function(fake_output, real_labels)
generator_loss.backward()
generator_optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Discriminator Loss: {:.4f}, Generator Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(dataloader), discriminator_loss.item(), generator_loss.item()))
# 加载数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)
# 初始化生成器和判别器
generator = Generator()
discriminator = Discriminator()
# 训练GAN模型
train_gan(generator, discriminator, dataloader, num_epochs=10)
```
阅读全文