导入pyspark.conf,pyspark.sparkcontext,pyspark.mllib,实现SVM对于新闻的分类。数据集为多个按照类别分类的文件夹,每个文件夹下为新闻的中文正文内容,采用tf-idf对数据集进行清洗和停词处理等,得到RDD关于文本向量和类别标签。路径为/project/类别/文本
时间: 2023-12-14 22:38:58 浏览: 247
好的,首先需要安装并配置好pyspark,然后按照以下步骤进行操作:
1. 导入必要的包和模块
```python
from pyspark.conf import SparkConf
from pyspark.sql import SparkSession
from pyspark.ml.feature import HashingTF, IDF, Tokenizer
from pyspark.ml.classification import LinearSVC
from pyspark.ml import Pipeline
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
```
2. 创建SparkSession
```python
conf = SparkConf().setAppName("SVM for News Classification")
spark = SparkSession.builder.config(conf=conf).getOrCreate()
```
3. 读取数据集并转换为RDD格式
```python
data = spark.sparkContext.wholeTextFiles("/project/*/*")
# data格式为 (文件路径, 文件内容)
labels_rdd = data.map(lambda x: x[0].split("/")[-2])
texts_rdd = data.map(lambda x: x[1])
```
4. 对文本进行分词、停用词处理、TF-IDF向量化
```python
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="rawFeatures")
idf = IDF(inputCol=hashingTF.getOutputCol(), outputCol="features")
pipeline = Pipeline(stages=[tokenizer, hashingTF, idf])
model = pipeline.fit(texts_df)
texts_df = model.transform(texts_df)
```
5. 将类别标签转换为数值型
```python
labels_dict = labels_rdd.distinct().zipWithIndex().collectAsMap()
labels_broad = spark.sparkContext.broadcast(labels_dict)
labels_rdd = labels_rdd.map(lambda x: labels_broad.value[x])
```
6. 将文本向量和类别标签合并为RDD
```python
data_rdd = texts_df.select("features").rdd.zipWithIndex().map(lambda x: (x[1], x[0][0])).join(labels_rdd)
data_rdd = data_rdd.map(lambda x: (x[1][0], x[1][1]))
```
7. 划分训练集和测试集,并训练SVM模型
```python
train_rdd, test_rdd = data_rdd.randomSplit([0.8, 0.2])
svm = LinearSVC(maxIter=10, regParam=0.1)
svm_model = svm.fit(train_rdd)
predictions = svm_model.transform(test_rdd)
```
8. 评估模型性能
```python
evaluator = MulticlassClassificationEvaluator(predictionCol="prediction", labelCol="_2", metricName="accuracy")
accuracy = evaluator.evaluate(predictions)
print("Accuracy = %g" % accuracy)
```
这样就完成了SVM对新闻分类的实现。
阅读全文